CDRL No. 0002AC-5 AD—A267
AR I!l. IIIJ

System Description Document for the
Manufacturing Optlmlzatlon (MO) System

Linda J. Lapointe ELE CTE fa
Thomas J. Laliberty JUL 231993 '

Robert V.E. Bryant A

Raytheomn Company

1993

for public telease and sale; its

This document has been approved
distribution is unlimited.

DARPA

Defense Advanced Research
Projects Agency

o . L 93-16
83 ¢ . .. ¢ IIMMIMMM

- -s

CDRL No. 0002AC-5

System Description Document for the
Manufacturing Optimization (MO) System

Prepared by

Linda J. Lapointe
Thomas J. Laliberty
Robert V.E. Bryant

Raytheon Company
Missile Systems Laboratories
Tewksbury, MA 01876

July 1993

ARPA Order No. 8363/02
Contract MDA972-92-C-0020

Prepared for

DARPA

Defense Advanced Research
Projects Agency

Contracts Management Office

Arlington, VA 22203-1714

(93]

Accesion For
NTIS CRA&!} —d
DTIC TAB vl
Unannou..ced]
J tf Cton
tib ot
! Yy tcvt.s
- { AV -L; T
Dist RS

Contents
| BN 1+ oL P N 1
I.]1 Identification.......cooveniiiniiiiiiiiitii e neaaees 1
1.2 SyStem OVEIVIEWiniiiiiii it r it a i eaeeas 1
1.3 Definition of Key Termsooioiiiiiiiiiiiiiiiiie 2
1.4 Document OVEIVIEWoutiiriiiiitiiie it reeereiretiaeranetaneraneansennnnas 5
2. Referenced DOCUMENLSoouiiiieieietiieiiiienee et et eueraeaeaaaecneeeaannans 6
3. Manufacturing Optimization SYSteMcoiiiriiiiniiiiiiiiiiiiiiin e 7
3.1 MO OVeIVIEW. ittt e caeree e e et e s st s aeenraes 7
3.2 MO AICHIECIUIE. ..ottt e eee et e et eaaeneeaneneannes 9
3.3 MO System DesCiPtonouvniiiiiieiniiiiiiiieiie e, 12
3.3.1 External Interfaces........c.ccovieiiiiiiieiiiiiininiiiiiiiniinnin, 12
3.3.1.1 Project Coordination Boardc..c.coceeineninnene. 12
3.3.1.2 Requirements Manager.........ccoooovviiiinniinnniinnnnn, 14
3.3.1.3 RAPIDS ... 15
3.3.2 Product (STEP) Models...ccccocveiniiiiiiniiiiiiiinenreinencenan. 16
3.3.3 ProcessModelsccoiiiviiiniiiiininann.. e eteaeeereeeteaaeaas 17
3.3.4 Manufacturing Analyzer...........cccoceeeiiiuniiincninniriennnnnnns 20
3.3.4.1 Process Analyzer..........ccovmireeiniiiiniiiiiianaens 20
3.3.4.2 Yield & Rework Analyzer............c.cooeeeiiiinannn. 21
3.3.4.3 CostEsStimatorcoceveiuiiiiiiiiniiiiiiiiienne. 21
3.3.5 Manufacturing AdviSOrT......cccceeiiiiiiiriiiiiiiiiiiiiiriiiiiiannes 22
3.3.6 ProcessModeler........cooiviiiiiiiiiiiiii e 23
4. UserInterface SCreens.........cviieiieiiiiiiiiiiiiiiiiie i et et e eerneenraneaaen 26
4.1 FUeMenu . ..o e 26
4.1.1 Product/STEP Data Selection........cc..cecocevvvvniieinnerincnnnnen. 27
4.1.2 Process Model Selection...........coceievvniieiiiiniiiniinenaennnn. 27
4.1.3 RAPIDS to STEP Translator Interface................c.cooeiieentnn 28
4.1.4 STEP to RAPIDS Translator Interface..........c..c.cooeveenennne. 29
4.2 Analyzer FOIMu....oiiiiiiiiiiiiii e 30
4.3 AdviSOr WINAOWoeoiiiniiii i 30
4.3.1 Select AnalysiSRuns...........ccooiiiiiiiiiiiiiiiii 31
4.3.2 Process Graph Display...........c.oooiiiiiiiiiniiiiiic 31
4.33 Quality Graphs........ccoiiiiiiiii 33

ii

|

4.33.1 YieldGraphs.....c.cocovvvveininiiiniiineiiiniiiiin, 34
4.3.3.2 Rework Graphs........cocoviuiiiiiiiiiiiiiiiiinnn. 35
4.3.3.3 Production Quantity Graphs..........ccocounnerinnnnnnn. 35
4.3.4 Costing Graphsccoiviiiiiiiiniiiiiiiiiiiii i 36
4.3.4.1 Time/Cost Graphs...........cccoviiiiiiiiininiiiiannnnne. 36
4.3.4.2 CostDetail Graphsc.coceveviiniiiiiiniianannnn.. 37
4.3.5 Analysis Reports Form......ccocovrrrmiriiirrinniiiiniicneneen. 37
4.4 Modeler WINAOW...oouiuniiriiiiniiiiii it eee e e e ree e 39
4.4.1 Manufacturing Activity Node Definition................c....oeell 41
4.4.2 Selection Rules Definitionccocvviiiiiiiiiiiiiiiii., 42
4.43.1 Yield Rate Definition..........ccccovviiiiiiiiiiniinnnnn.. 43
4.4.3.2 Rework Rate Definition..........cccooiviiiiiniiiiinan.. 44
4.4.4 Resource Definitionoooiiiiiiiiiiiiiiiiiiiiiiinirne 45
5. C++ Header File Definitions........c.oiiuiuiiiiiniiniiiiiiiiiiiiiieeieeiecienenenens 50
5.1 ProductDesign......c.uimiiiniitiiiiiiii e eeae 51
5.2 ProcessModel. ..o 55
5.2.1 ProcessModel Specificationcccooeiiiiiiiiiiiiiiiiiininn... S5
5.2.2 MfgSpec SpecifiCationcvieiiiiieniiniiieiiiieaaeieens 57
5.2.3 Process Specification.........c..ccoeiuiiiiiiiiiiiiiiiii e 59
5.2.4 Operation Specification.........cceeeueeriiriiiiiiiierieicnieennnn.. 61
5.2.5 Step Specification........c.cocvuiiiiiiiiiiiiiii 62
5.2.6 Quality Specification.........ccccceeviiiiiiiiiniiiiiiiiieiieeenn. 63
5.2.7 Scrap SpecifiCationc.ceiuieiiininiiiiiiiiiie 65
5.2.8 Rework Specification........ccccoviiiriiiiiiiieniiiicieennennenn. 66
5.2.9 Cost Specification....c...ccocuvviuviniiiiiniiininnnenein e 67
5.2.10 ResourceUtilization Specification...............cccoiveiiianninn... 69
5.2.11 Parameter Specificationc.cevvvievreiiniiiiieniiaeenn. 71
5.2.12 ResourceRates Specification........cccceveeeviiieirinineiieienneenin, 72
5.2.13 Resource Specification...........ocvviuiiereiniiiininiinieannenaaannas 73
5.2.13.1 Equipment Specificationccccovveierinninannnnn 74
5.2.13.2 ConsumableMaterial Specification...........c..cccueeee.. 75
5.2.13.3 ResourceConsumable Specification...................... 76
5.2.13.4 Labor Specification.............c.ocoovveiiiiiinnininnnn, 77
5.2.13.5 Facility Specification...........c...cooeveiiiiiiniininnn, 78
5.2.14 ReasoningLogic Specification.............c..ccoiiiiiiiiiiininints 79
5.2.15 Rules Specificationccovvieiiiiiiiiiiiiii e 80

iii

i
l 5.2.16 Expression Specification.............cooeviiiiiiiiiiiiiiiiinnin, 81
5.2.17 ComplexExp Specification........ccoouoiiiriiinniiniinnnnnnnne. 83
l 5.2.18 SimpleExp SPeCificationcveeerrericureeieeeenensenenenns 84
5.2.19 Equation Specification..........ccocoiiiiiiiiiiniiiiniin 85
l 5.2.20 ComplexTerm Specification.........c..cooveveiiiiniiiniiiniiinenen. 86
5.2.21 ComplexEquation Specification............c.coovviiiiiiieniiiaian. 87
5.2.22 ParenEquation Specification.............ccooovviiiiiiiiiiiiina.. 88
' 5.2.23 Term SpecifiCation........c.ecuviiiiniiniininiiiiiiiiiiiiiieiaans 90
5.2.24 Const Specificationcocoiviiiiniiiiiniiiiiiiii i 91
l 5.2.25 Addition/Subtraction Specification.........ccccccvvveneninnnnnn. 92
5.2.26 Multiplication/Division Specification............c.cococeiiiiiiiian. 93
. 5.2.27 Unary_Op SpPecifiCation..........ccceceereevvesreenuerreensenneeene 93
5.2.28 Equiv_Op Specificationcccvevviiinininininniiinenninne. 93
5.2.29 StringValue Specification...........coocvviiiiiiiiiiiiiinienn... 93
' 5.2.30 DataDlictStr Specification.......cccceeeueveeniiiiniiiiiniininnnennas. 94
5.2.30.1 EntityName Specification.............ccccoeeveeninnanann, 95
l 5.2.30.2 EntityAttrName Specificationcoooiennennn. 96
NG -V 1117/ 97
i §.4 AQVISOT. . verveeeeeeeeese e eeeeeeeeeee e e s eee e 98
5.5 Modeler i s 99
l 6. Database EXPRESS SChEMAsuvuiiiiiiiieeieereiiiennioiiininiieeineeineeenee 101
6.1 Process Model Schema Specification.............ccceovviiiiiiiiiiiiiinin.. 101
6.1.1 EXPRESS Schema for Process Model..........cccoouunnirnninie. 102
' 6.1.1.1 ProcessModel Entityccoeviiniiiiiiiiinni. 103
6.1.1.2 MfgSpecEntityccoeveieiniiiiiiiii 103
l 6.1.1.3 Process Entity.........ccoeviieniiiiiiiiiiiiiiiiiin 104
6.1.1.4 Operation Entity......cccoooriiniiiiiiiiiiinn . 105
' 6.1.1.5 SHEPENGLY....oovoeoeeeoeeeeeeees oo eeeeeeeenennes 105
6.1.1.6 ScrapEntityc.cooiiiiiiiiiiii 106
l 6.1.1.7 Rework Entity.....ccccccoemiieereiiniermeeniimennneneeennn 106
6.1.1.8 CostData........ccooeiiiininiiiniiiiiieiiiiciiiians 107
6.1.1.9 QualityData.......c..ooevmininininiiiiiiiii 107
. 6.1.1.10 ReasoninglogicEntity............cccooevviiiinininninn. 108
6.1.2 EXPRESS-G Schema for Process Model 108
. 6.1.3 EXPRESS Schema for Resource..............coooiviiiiiii 109
6.1.3.1 ResourceUtilization Entity................oooviiiiinin. 110

i

iv
]

6.1.3.2 Resource Entity..........ccoeviiniiiiiiiiiniiiiinninn, 111
6.1.3.3 Parameter Entitycccooiiiiiiiiiiiiiiii 111
6.1.3.4 LaborEntity........cc.cooiiiiiiiiiiiiiiiiiiiii 112
6.1.3.5 EquipmentEntitycc.cooviiiiiiiiiiiiiiiiii 112
6.1.3.6 FacilityEntityccoceiiiiiiiiii 112
6.1.3.7 ConsumableMaterial Entity............cc.ooviiiiininan.. 113
6.1.3.8 ResourceRates Entity........ccoccccoveeiiiniinniiinnnnn, 114

6.1.4 EXPRESS-G Schema for Resource...........ceeevveiiiiiciiannnn. 114
6.1.5 EXPRESS Schema for Selection Rules.................c...o.o..... 115
6.1.5.1 Constants and Types for Rule Construction............. 117

€ 1.5.2 DataDictStr Entity......c.coooeiviiiiiriiinniinnninnn. 118
6.1.5.3 Rules Entities.....c.ccoeeviiiiiiiiiniiiiiiiineiniannnn. 119
6.1.5.4 Expression Entities.........cocoveieiieiieeniiinenenannnen, 119
6.1.5.5 Equation Entities..........cc.evevueiiiniiniinennineneiiennes 120
6.1.5.6 TermEntities..........cccoiiiiiiiiiiiiiiiiiiiiiiniiin, 120
6.1.5.7 ComplexTerm Entitiesc.ccoovveviiiiiiininninanne. 121

6.1.6 EXPRESS-G Schema for Selection Rules..........cccceeuueeeeen. 122
6.2 Product Model Schema Specification...........cccoovviiiiiiiiiiiiiiin.. 123
6.2.1 Printed Wiring Board Product Data Model 123
6.2.1.1 PWBDesignSchema........c..cccocvviiiiiiiiiinninnn, 124
6.2.1.2 PWB Generic Types and Entities................c.ooeini. 126
6.2.1.3 HeaderDataSchemacooeiiiiieiiiiiiineinannen. 127
6.2.1.4 AliasData Schema..........coiveiiiiieiieiiiiiiiennnnnens 128
6.2.1.5 Annotation Data Schema.............c.c..cocoeiiii.. 128
6.2.1.6 CARIDataSchema.........c.ooevviiiiiiiiiiiiiiininnnn. 129
6.2.1.7 ClassDataSchemac.cccovviriiiiiiiiniiiennenenen, 129
6.2.1.8 CommentData Schemacoooieiiviiiiinininen, 130
6.2.1.9 Design Rule Data Schemacccocein vt 130
6.2.1.10 GateData Schemaccoovviiiiniiiiiinniiinnenenens 133
6.2.1.11 Net Data Schema........cc.cooviviiiiiiiiiiiiiirieeneenees 134
6.2.1.12 Metal AreaData Schema..............ooooeiiiiiiiiinnn.. 136
6.2.1.13 PartData Schema.......c...cocoviiiiiniiiiiiiiiiiinnnnns 136
6.2.1.14 PinDataSchema.............ccoceeiiiveiiiiiiiiiiiinane, 139
6.2.1.15 Conductor Routing Data Schema......................... 140
6.2.1.16 ViaDataSchema..............c.cooeiiiiiiiiiiiiiniinne. 141
6.2.1.17 Library Cross Reference Data Schema................... 141

v

6.2.2 PWB Design Data EXPRESS-G Modelc......
6.2.3 Electronic Component Library Data Model..........................
6.2.3.1 Component Model Data Schema..........................
6.2.3.2 Pad Stack Data Schema.............ccc.cocoviiiiiinnnn.n.
6.2.3.3 Pad Shape DataSchemaccevviveiriiiininnn...
6.2.4 Electronic Component Library Data EXPRESS-G Model.........

...

..

vi

Figures and Tables

Figure 1.2-1 Two Level Team Concept.........covvviiiiiniiiiiiiiiiiiiiiiieiieiieeeaeneens, 2

Figure 3.1-1 MO External Interfaceso.ovveiiiiiiiiiiiieeeiiiiiiceeeeenea, 7

Figure 3.2-1 MO System ArchiteCture.........coeeoveoimerirenieeiieniiiviiincernnnerennens 10
Figure 3.2-2 Process Modeler Block Diagram..............cccoovviiiiiiiiiiiiiiiiian.n, 11
Figure 3.2-3 Manufacturing Analyzer Block Diagramc.ocoiiiiiinninin. 11
Figure 3.2-4 Manufacturing Advisor Block Diagramcoooiiiiininn. 12
Figure 3.3-1 Sample PWB Design Cycle Flow..........c.coiciiiieiiiiiiiiiiiiiiiiieen, 14
Figure 3.3-2 Printed Wiring Board Manufacturing Flow....................covvinni.. 18
Figure 3.3-3 Printed Wiring Assembly Process Model...................ocviiiiiiinnnn.. 20
Figure 3.3-5 Sample Yield versus Process Comparison Graph............cccooevvennnene. 23
Figure 3.3-6 Process Modeler User Interface Windowcccccovviiiiiiiininninnnn. 25
Figure 4-1 MO Main WindoW.....c.ccoiiiimiiiimiiiiiniiieice e evree e 26
Figure 4.1-1 File OPHONS.oviiiiiiiiie e et e e aes 26
Figure 4.1-2 Product Data Selection/Edit MenU........cccccurrereccureirirerneeeecnnneen. 27
Figure 4.1-3 Process Model Selection Menu.............c.cooviiiiiviiiiiiiiiiiiieienen, 28
Figure 4.1-4 RAPIDS to STEPData FIOWc.ocovviviiiiieiiieniaiiieeceeann, 28
Figure 4.1-5 RAPIDS t0 STEP FOImocoiiiiiiiiiiiiiiie e 29
Figure 4.1-6 STEP to RAPIDS Data FIOWc.ocoiiiiiiiiiiiiiciiiee e 29
Figure 4.1-7 STEP t0 RAPIDS FOM......cccciiiiiiiiiiiiiiiiiiieieeiieieaeeveenenenns 30
Figure 4.3-1 Manufacturing Advisor Windowccooiiiiiiiiiniiiiininiennn, 31
Figure 4.3-2 Process Graph.........ccoeiiiiiieiiiiiiiii i e 32
Figure 4.3-3 Process Results Viewing Form...............cccocoiiiviiiiiiiiiiiiininn. 33
Figure 4.3-4 Quality Graphs.....c.ccoovmiiiiiiiiiiiiiicce e 33
Figure 4.3-5 Yield versus Process Graph..........cccccereviievienineniecnvinneecceenenene. 34
Figure 4.3-6 Yield versus Process Comparison Graphc.ccoiiiiiiiiiiininnnn.. 35
Figure 4.3-7 Production Quantity versus Process Graph..............c.c.ooiiviininne.. 36
Figure 4.3-8 Cost Details Graph for Process........cccceevveveeemieiiiniiereeeiveeecnnnen. 37
Figure 4.3-9 Analysis Reports FOrm.........ccoooiiiiiiiiiiiiiiiinic e, 38
Figure 4.4-1 Process Modeler Window.......ccccooiiiiiiiiiiiiiniiniiiiiiiiiiiiiieeeeeeen, 40
Figure 4.4-2 Process Model Selection Windowccoveviiiiiiiiiiiiinniniininn, 41
Figure 4.4-3 Manufacturing Activity Specification Windowonnee. 42
Figure 4.4-4 Selection Rules Windowc..ocoiiiiiiiiiiiiiiiiicicens 42
Figure 4.4-5 Rule Specification............cocoiviiiiiiiiiiiiiiiiiiii e 43

vii

Figure 4.4-6 Yield Specification Windowocociiiiiiiiiiiiiiiinin, 44
Figure 4.4-7 Rework Specification Window..........ccooiiiiiiniiiiiiiiiiiiiiiinnn . 45
Figure 4.4-8 Resource Utilization Windowcccoviiiiiiiiiiiiiiiiiiiniceieeenee 46
Figure 4.4-9 Resource Windowociiviiiiiiiiiiiiiii e 46
Figure 4.4-10 Resource Specification Window..........ccooviiiiiiiiiiiiiiiiiniininnenen.. 47
Figure 4.4-11 Facility Resource Specification Windowocoiveiiiiniei.. 47
Figure 4.4-12 Equipment Resource Specification Windowc...ocviiiniinnen. 48
Figure 4.4-13 Resource/Consumable Specification Windowcc.ccooiiiien. o, 48
Figure 4.4-14 Labor Resource Windowc.c.cooevueiuiiiiiiiniienianioiaireneaannnnnan, 49
Figure 4.4-15 Labor Rate Resource Specification Windowc.cooveiieiiiiinn, 49
Figure 5-1 Top-Level Class (Categories) Diagram......cccooocceeerviicvireriinniieceneen, 50
Figure 6.1-1 EXPRESS-G Model of Process Model Schema................................ 109
Figure 6.1-2 EXPRESS-G Model of Resources Schema...........cccceeevnvveeennnnnnnn. 115
Figure 6.1-3 EXPRESS-G Model of Selection Rules Schema..........ccccccecunnnnnnen. 122
Figure 6.2-1 PWB Schema Level EXPRESS-G Modelc..c.cooiiiiiiiiiininnnn... 142
Figure 6.2-2 Component Data EXPRESS-G Schema.......cccccccvmnniiinnnnncinninnn. 146
viii

UNCLASSIFIED
CDRL No. 0002AC-5

1. Scope

1.1 Identification

This is the System Description Document for the Manufacturing Optimization (MO)
System. The development activities are being performed under Defense Advanced Research
Projects Agency (DARPA) funding, contract number MDA972-92-C-0020, by the MO
Development Team. The Development Team is comprised of personnel from Computer Aided
Engineering Operations (CAEO) of the Raytheon Missile Systems Laboratories (MSL) with
participation from the MSL Mechanical Engineering Laboratory (MEL) and the Missile
Systems Division (MSD) West Andover Manufacturing facility.

1.2 System Overview

DICE has developed a concurrent engineering model that replicates the human tiger team
concept. The basic tenet of the human tiger team is to have the various specialists contributing
to the project co-located. In today’s environment of complex product designs and
geographically dispersed specialists, DICE envisioned a “virtual tiger team” working on a
“unified product model” accessible by computer networks. Such an environment must enable
specialists from each funcdonal area to work on the design concurrently and share development

ideas.

Raytheon proposed a conceptual refinement to the original DICE virtual tiger team. This
refinement is a two level approach with a product virtual team having a global view supported
by information supplied by lower level “specialized” process virtual teams. See Figure 1.2-1.
This refinement is needed because of the growing complexity of our products and supporting
development processes, which make it difficult for one individual to adequately comprehend all
of the complexities required to establish 2 unified manufacturing position. The “virtual process
team” concept would allow comprehensive representation from each specialized process area

to contribute to the formulation of the final manufacturing recommendations.

UNCLASSIFIED
CDRL No. 0002AC-5
GLOBAL PRODUCT VIRTUAL TEAM
Test
Design Product Quality
Design
PECI P TEA
Cable/Harness
MFG Support
Sheet .
Metal Process Consolidated
Design Manufacturing
\ / Position
Printed Wiring Boar Circuit Carc
Fabrication Assembly

Figure 1.2-1 Two Level Team Concept

The purpose of the Manufacturing Optimization (MQ) system is to enable all manufacturing
specialists to participate in the product/process development activity concurrently. The system
consists of a set of tools to model the manufacturing processes and centralize the various
process tradeoffs. Recommendations can be compared and negotiated among the individual
manufacturing participants. After the manufacturing team has reached a consolidated position,

the re.suits are passed back to the cross functional (top level) team for their negotiation.

1.3 Definition of Key Terms

Communications Manager (CM) - a collection of modules developed as part of the DICE
program which facilitate distributed computing in a heterogeneous network.

Consolidated Manufacturing Position - recommendations from the manufacturing
process team. The recommendations are in the form of product design changes.

Hierarchical Planning System - a tree structure breakdown defined such that each node in
the tree has a parent node and possible children nodes. The hierarchical structure
defines the generalization-specialization breakdown of manufacturing processes. In
MO, the nodes in the tree represent individual manufacturing activities which point at
three types of possible manufacturing data. The three data types are processes.

t9

UNCLASSIFIED
CDRL No. 0002AC-5

operations, and steps. Each node in the tree contains an ordering flag which defines
the children nodes as sequential or concurrent activities. For a particular activity to be
included in the overall manufacturing process for a particular product, its reasoning
logic must be satisfied.

Manufacturing Adyvisor - a MO core module which provides the user with various methods
to view the results produced by the Manufacturing Analyzer. Results can be viewed
via graphing functionality or through textual reports.

Manufacturing Analyzer - a MO core module which provides the following three services:
1. Selection of individual proce-ses from the process model which are used to
manufacture a particular product; 2. Analysis of the processes selected and the
operations attached to each process to estimate scrap and rework rates; 3. Analysis of
the resources needed to perform the operations attached to the selected processes for
cost.

Operation - a unit of work performed on the part. Associated with each operation are scrap
rates, rework rates, and required resources.

Project Coordination Board (PCB) - a DICE tool supported by CERC that provides
support for the coordination of the product development activities in a cooperative
environment. It provides for common visibility into the design task structure, task
assignment capabilities, and change notification capabilities.

Process - an organized group of manufacturing operations sharing characteristics.

Process Model - the specification of the total manufacturing process required to produce the
product. The process model consists of a hierarchical tree structure of individual
manufacturing activities.

Process Modeler - a MO core moduie which provides the user with the ability to graphically
model processes, operations, steps and resources.

Process Team - the lower level specialized team in the two-tiered team concept. The process
team is responsible for providing a consolidated position 1n terms of their
specialization. The users of the MO system would be part of the manufacturing
process team and would be required to provide a consolidated manufacturing position
to the global level product team.

Product Model - a set of STEP entities that define the features and attributes of the product.
The Process Modeler provides a means of defining rules and equations in terms of the
existence, count, or value of particular product model entity instances.

Product Team - the global level team in the two-tiered team concept. The global team is
supported by all of the specialized process teams.

PWB - Printed Wiring Board.

RAPIDS - Raytheon Automated Placement and Interconnect Design System. Raytheon’s
conceptual design and analysis workstation for Printed Wiring Boards (PWB).
RAPIDS supports component placement and placement density analysis, as well as a
number of other analysis functions, including automatic component insertion
checking. Interfaces between RAPIDS and the PWB analysis tools for the following

UNCLASSIFIED
CDRL No. 0002AC-5

criteria are also provided as part of the RAPIDS tool suite: Manufacturing, Post
Layout Effects, Reliability, and Thermal.

Rapids to STEP - a C++ application which utilizes the ROSE database and tools developed
by STEP Tools, Inc. The program reads the RAPIDS database using the RAPIDS
Procedural Interface. A persistent STEP object of the appropriate class is generated
for each RAPIDS record read. The object is then stored as a STEP entity in a physical
STEP file.

Resource - any facility, labor, equipment, or consumable material used in the manufacturing
process.

Rework Rate - the percentage of product parts which must be reworked due to an operation.
Rework data is maintained in a list of rework entities. In each entity there is a rework
rule and a corresponding rework rate. If the rework rule is satisfied, then the
corresponding rework rate is computed. There is a list of resources associated with
the rework which is used to calculate the cost of performing the rework operation.

Requirements Manager (RM) - Product Track Requirements Manager (CIMFLEX
Teknowledge) is a software tool designed to manage product requirements and
evaluate the compliance of product design data with requirements.

ROSE - Rensselaer Object System for Engineering is an object-oriented database management
system developed at Rensselaer Polytechnic Institute. It has been developed to
support engineering applications as part of the DICE program. ROSE is currently part
of the STEP Programmer’s Toolkit available from STEP Tools, Inc. ROSE is a
database which supports concurrency using a data model that allows the differences
between two design versions to be computed as a delta file. The MO data for the
manufacturing processes and operations, as well as the various analysis results, will
be stored and managed within ROSE.

Step - An elemental unit of work within an operation.

STEP - STandard for the Exchange of Product model data is the International Standards
Organization standard 10303. The objective of the standard is to provide a mechanism
capable of representing product data throughout the life cycle of a product,
independent of any particular system. STEP data is stored as instances of class
entities.

STEP to Rapids - a C++ application which utilizes ROSE and tools developed by STEP
Tools, Inc. The program reads a STEP file conforming to the EXPRESS schemas
that model the PWB product data. The ROSE STEP filer is used to read the STEP file
into instances of classes created by the express2c++ compiler. The class instance is
then transformed into the appropriate RAPIDS data record and stored to the RAPIDS
database.

Yield Rate - one hundred minus the percentage of product parts that must be scrapped due to
an operation. Yield data is m.aintained in a list of yield entities. In each entity there is a
yield rule and a corresponding yield rate. {f the yield rule is satisfied. then the
comresponding yield rate is computed.

UNCLASSIFIED
CDRL No. 0002AC-5

1.4 Document Overview

The purpose of this report is to provide a detailed description of the Manufacturing
Optimization (MO) Software System. It contains the system overview, description and use, the
user interface screens, the C++ header file definitions for the pertinent class and objects, and

the product and process schema specifications for MO.

The system description discusses the capabilities and interfaces provided in the MO system.
The user interface screens present the look and feel of the system to the user, and the C++
header files and schema specification provide the details of the data and methods behind the

classes and objects in the system.

2.

1.

10.

11.
12.
13.
14.

UNCLASSIFIED
CDRL No. 0002AC-5

Referenced Documents
BR-20558-1, 14 June 1991, DARPA Initiative In Concurrent Engineering (DICE)

Manufacturin timization - Volume I - Technical.

CDRL No. 0002AC-1, March 1992, Operational Concept Document For The
Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

CDRL No. 0002AC-2, March 1992, Description of CE Technology For The
Manufacturing Optimization (MO) System, Contract No. MDA972-92-C-0020.

CDRL No. 0002AC-3, May 1992, Functional Requirements and Measure of

Performance For The Manufacturing Optimization (MO) System, Contract No. MDA972-
92-C-0020.

Object-Oriented Analysis, Second Edition by Peter Coad/Edward Yourdon, Yourdon
Press Computing Series, 1991.

-Orij , by Peter Coad/Edward Yourdon, Yourdon Press Computing
Series, 1991.

Object Oriented Design with Applications by Grady Booch, The Benjamin/Cummings
Publishing Company, Inc., 1991.

Product Data Representation and Exchange—Part 11: The EXPRESS Language Reference
Manual, ISO DIS 10303-11, National Institute of Standards and Technology, 1992.

ProductTrack Requirement Manager User Guide and Reference, Release 1.02 for Sun
SPARC and Oracle RDBMS, Cimflex Teknowledge Corporation, October 1992.

RAPIDS Database Data Dictionary, RAYCAD Document #1266021, Raytheon
Company, November 22, 1991.

STEP Programmer’s Toolkit Reference Manual, STEP Tools Inc., 1992.
STEP Programmer’s Toolkit Tutorial Manual, STEP Tools Inc., 1992.
STEP Utilities Reference Manual, STEP Tools Inc., 1992.

User Manual for the Project Coordination Board (PCB) of DICE (DARPA Initiative in
Concurrent Engineering, July 10, 1992.

UNCLASSIFIED
CDRL No. 0002AC-5

3. Manufacturing Optimization System
3.1 MO Overview

The concept behind the Manufacturing Optimization (MO) system is to facilitate a two tiered
team approach to the product/process development cycle where the product design is analyzed
by multiple manufacturing engineers and the product/process changes are traded concurrently
in the product and process domains. The system supports Design for Manufacturing and
Assembly (DFMA) with a set of tools to model the manufacturing processes and manage
tradeoffs across multiple processes. The lower level “specialized” team will transfer their
suggested design changes back to the top-level product team as the Manufacturing Team’s

consolidated position.

The external software packages which the MO system is comprised of are the ROSE DB,
Requirements Manager, and the Project Coordination Board/Communications Manager. For
demonstration purposes, an interface was developed between Raytheon Automated Placement
and Interconnect Design System (RAPIDS) and the ROSE DB. Figure 3.1-1 illustrates the
external interfaces to the MO system.

Project
Requirements Coordination
Manager Board
{RM) (PCB)
Communications
Manager (CM)

Consolidated
Manufacturing

Position
Manutacturing Manutacturability
Engineer Optimization /
(MO) ‘
System

Product
Database

Manufacturing ——— RAPIDS
Engineer

Figure 3.1-1 MO External Interfaces

UNCLASSIFIED
CDRL No. 0002AC-5

ROSE is an object-oriented database management system that has been developed for
engineering applications and enhanced to support the DICE program. ROSE is currently part of
the STEP Programmer’s Toolkit from STEP Tools, Inc. ROSE is a database which supports
concurrency using a data model that allows the differences between two design versions to be
computed as a delta file. The MO data for the manufacturing activities, as well as the various
analysis results are being stored and managed within ROSE. The manufacturing activity data
consists of the process selection knowledge base, process, operation, and step data, yield and

rework data, and resource specifications.

The Requirements Manager (RM) is a software tool designed to manage product
requirements and evaluate the compliance of product design data with requirements. The
purpose of integrating the RM into the MO system is to provide the “top level” product
development team insight into manufacturing requirements. It is common practice for a
manufacturer to document manufacturability, or producibility guidelines which delineate
standard manufacturing practices and acceptable design parameters. The purpose of these
guidelines is to communicate the capabilities of the manufacturing process to the product design
community to ensure that new product designs are specified within manufacturing capabilities.
The guidelines delineate quantitative and qualitative producibility issues. The current plan is for
the RM and the MO software to be coupled through the RM’s Application Programming
Interface (API) to provide the user with a manufacturing guidelines analyzer capability.

The Project Coordination Board (PCB) provides support for the coordination of the
product development activities in a cooperative environment. It provides common visibility and
change notifications. The Communications Manager (CM) is a collection of modules that
facilitates distributed computing in a heterogeneous network. The Communication and
Directory Services provided in the CM module are required to utilize the PCB. The PCB/CM
are being used in MO to support the communication of the product/process development
activities. There is no direct interface between the MO software modules and the PCB/CM

applications. It is being used to manage the product task structure only.

RAPIDS is Raytheon’s conceptual design and analysis workstation for Printed Wiring
Boards (PWB). RAPIDS supports component placement and placement density analysis, as
well as a number of other analysis functions, including automatic component insertion

checking and thermal analysis.

UNCLASSIFIED
CDRL No. 0002AC-5

3.2 MO Architecture

MO is a X-Windows based tool. The application software is written in C and C++, the
Motif user interface was developed using the UIM/X User Interface Management System, and
all data is being stored in STEP physical files.

The decision to use STEP physical files for the underlying data format for the MO system
stems from the fact that STEP is the emerging international standard for data exchange between
automation systems. Access to these STEP files is provided through the STEP Programmer’s
Toolkit from STEP Tools Inc. The Toolkit provides a means of reading and writing STEP

entity instances through a C++ class library.

The MO core system is composed of three software modules, Manufacturing Analyzer,
Manufacturing Advisor, and Process Modeler. The Project Coordination Board (PCB) and
Communications Manager (CM) from Concurrent Engineering Research Center (CERC),
ProductTrack Requirements Manager (RM) from Cimflex Teknowledge, the ROSE database
from STEP Tools Inc., and the two way interface to the Raytheon Automated Placement and
Interconnect Design System (RAPIDS) complete the software suite which constitute the MO

system. Figure 3.2-1 illustrates the MO System Architecture.

PCB/CM

Z0—-——H>»0O0-ZCZZ00 0OomMmOQOIBIOVI-—-HOCO0OTUT

UNCLASSIFIED
CDRL No. 0002AC-5
RAPIDS DB = RM
DESIGN Mfg
SYSTEM Guideline
DbB Analyzer
CAD ROSE to) { RAPIDS Product Track-AM | product data
Intertace|\ RAPIDS / \ to ROSE AP exchange
Y ROSE DB H
Product Design Data
i STEP Format
T v a
- - . 4 l
Mfg Process Data Mig Analysis Results
« process model » selected process flows
+ yield & rework data « yield & rework results per opno
« time & cost data « time & cost results per opno
 resources * suggested mfg changes
v1
v2 y v
- L~
A

¢

Support:

+ graphical building of
process model

+ gasy entry of process
selection knowledge

Process Modeler

Mig Analyzer

Process Analyzer
Selects a process sequence
based on actual part entities
and aftributes.

« graphically displaying resuits
« graphically comparisons

« report generation

« final Mfg position report

* YR data entry
costing data entry | Cost Estimator
r Calculate
Mfg Advisor leld/Rework . Ideal
Analyzer _!ma'f.an
Support: calculates Y/R

per operation

Calculate
Actual
Time/Cost

MO CORE SYSTEM

Figure 3.2-1 MO System Architecture

10

The Process Modeler provides the user with the ability to model processes and resources

required to manufacture a product. Each process is modeled as a set of operations, where an

UNCLASSIFIED
CDRL No. 0002AC-5

operation is a unit of work performed on the product part. Each operation is modeled as a set of
operational steps, where a step is an elemental unit of work within an operation. Yield and
rework rates are defined for each operation. The output of the Process Modeler is a hierarchical
tree structure of individual manufacturing activities which point at either process, operation, or

step data. Figure 3.2-2 depicts a block diagram of the Process Modeler.

Process
Modeler
Manufacturing
>, Resource
Activity Modeler
Modeler

Figure 3.2-2 Process Modeler Block Diagram

The Manufacturing Analyzer provides the following three services: 1. Select the individual
activities from the process model that are used to manufacture a particular product. 2. Analyze
the processes, operations, and steps to estimate scrap and rework rates. 3. Analyze the
resources attached to the selected processes, operations, and steps for cost. The analyzer
results are composed of design feature entities from the product design database (STEP file)
along with the selected manufacturing processes from the user specified process model. Figure

3.2-3 depicts a functional block diagram of the Manufacturing Analyzer.

Manufacturing
Analyzer
Process Yield & Rework Cost
Analyzer Analyzer Estimator

Figure 3.2-3 Manufacturing Analyzer Block Diagram

The Manufacturing Advisor provides the user with various methods to view the results
produced from the analyzer. The results can be viewed graphically (i.e. line, bar, stacked bar

and pie charts) or textually. The reporting capability allows the user to customize a detailed

11

UNCLASSIFIED
CDRL No. 0002AC-5

report which can be printed to the screen or to an ASCII file. MO allows the user to view one
or more sets of analysis results at a time. By selecting multiple analysis runs to graphically
display, the user can visually compare the analyses. Figure 3.2-4 shows a functional block

diagram of the Manufacturing Advisor.

Manufacturing
Advisor
Graph/Charts Report/Text
Process Yield & Rework Time/Cost
Flow Results Results

Figure 3.2-4 Manufacturing Advisor Block Diagram

3.3 MO System Description

3.3.1 External Interfaces
3.3.1.1 Project Coordination Board

The Project Coordination Board (PCB) is a system developed to provide support for the
coordination of the product development activities in a cooperative environment. The PCB
provides common visibility and change notification through the common workspace, planning
and scheduling of activities through the task structure, monitoring progress of product
development through the product structure (i.e. constraints), and computer support for team
structure through messages. The Communications Manager (CM) is a collection of mudules
that facilitates distributed computing in a heterogeneous network. It promotes the notion of a
virtual network of resources which the project team members can exploit without any prior
knowledge of the underlying physical network. The Communication and Directory Services

provided in the CM module are required to utilize the PCB.

12

R VBN WA IS ..

UNCLASSIFIED
CDRL No. 0002AC-5

MO introduces the concept of a two tiered virtual tiger team. The two tiered approach
consists of a cross functional product team linked to teams within each of the functions, in
this case a manufacturing process team. To implement this approach there must be
communication among the members of each team, and between the product and process team.
The PCB/CM is being used to support the following capabilities which are required for this

type of communication:

* Product - to - Process Team Communication
+ Notification of design task completed.
* Notification and issuance of database available for analysis.
« Notification of alternative designs or trade-off decisions under consideration.

* Process - to - Product Team Communication
* Notification and issuance of analysis results.
* Notification and issuance of modified database with recommended changes.
* Notification of changes to the process, guidelines, cost or yield models.

We are using the product task structure within the PCB/CM to model the product to process
development team communication. Included in this task structure are major design steps, such
as concept development, design capture, design verification, component placement, routing,
transition to production, and several design reviews. The design reviews included
representatives from design, test, reliability, manufacturing, and thermal. Figure 3.3-1 is a
high level view which represents the design cycle steps which model a typical PWB product

design cycle.

13

UNCLASSIFIED
CDRL Nbo. 0002AC-5

Design Design
Capn%re —P Analysis/
— Verification
- Design Review
Packaging * Designer
Concept [P * Mfg
Design * Test
« Reliability
« Thermal

) Review Mfg
Parts List P Auto Insertability

Design Review

* Designer Documentation/
Component i o
3 o po) L . Mfg » Intercopnect |p| Final }}oard 91 Transition To
acemen « Test Routing Review Manufacturing
= Reliabitity
= Thermal

Figure 3.3-1 Sample PWB Design Cycle Flow

The Project Lead (user with special privileges) initializes the product task structure. The
Project Lead can then view any task or work order that appears in the network, add a task to
the existing network, acknowledge receiving a task, and indicate completion of a task. The
other team members can acknowledge receiving a task and indicate completion of that task. The
PCB automatically dispatches tasks as previous tasks are completed. Also, the Project Lead can
dispatch a task. Refer to Section 2 reference 14 for details on the PCB.

3.3.1.2 Requirements Manager

The Requirements Manager (RM) is a software tool designed to manage product
requirements and evaluate the compliance of product design data with requirements. The tool
allows the user to model requirements or guidelines, model the product design data structure,
populate the product design data structure with product data, and evaluate to what extent the
product design data meets the specified requirements. As a result of the evaluation process, the
tool will provide the user with a status (Pass, Fail, Uncertain, or Untested) of the compliance
of the product data with the requirements. The MO manufacturing guideline functionality is
being incorporated into the RM to provide the “top level” product development team insight

into manufacturing requirements apart from the MO analyses.

14

UNCLASSIFIED
CDRL No. 0002AC-5

It is common practice for a manufacturer to document manufacturability, or producibility
guidelines that delineate standard manufacturing practices and acceptable design parameters.
The purpose of these guidelines is to communicate the capabilities of the manufacturing process
to the product design community to ensure that new product designs are specified within
manufacturing capabilities. The guidelines delineate quantitative and qualitative producibility

issues.

The MO system is supporting evaluation of these manufacturing guidelines. For each
guideline entry there is a related recommendation. Unlike the process selection constraints,
manufacturability guideline violations may not cause alternative selection. The result could be
an operation cost increase, for instance, the need for non-standard tooling, a yield loss, or a
less tangible impact. These guidelines will be entered into the Requirements Manager so that
they are available to the product design team along with the other requirements placed on the
design. Some examples of these guidelines include: “The maximum board dimension must be
less than 14 inches”, “Switches must be hermetically sealed”, or “If the number of leads is less
than or equal to 24 the span should be 0.3 inches”. See reference 9 in section 2 for details on
the RM.

3.3.1.3 RAPIDS

RAPIDS is Raytheon’s conceptual design and analysis workstation for Printed Wiring
Boards (PWB). RAPIDS supports component placement and placement density analysis, as
well as a number of other analysis functions, including automatic component insertion
checking. Interfaces between RAPIDS and the PWB analysis tools for the following criteria
are also provided as part of the RAPIDS tool suite:

» Manufacturing

* Post Layout Effects
« Reliability

* Thermal

At Raytheon, RAPIDS is used for conceptual design and analysis of PWB’s. RAPIDS
serves in the same capacity at Raytheon that many commercial CAD systems (e.g. Mentor
Board Station, Racal-Redac Visula, Cadence, etc.) are used in at other companies. RAPIDS
provides an Application Programmatic Interface (API) with its database. This enables RAPIDS
to be easily interfaced with other systems and standards. Using RAPIDS in the MO system is

15

(.

UNCLASSIFIED
CDRL No. 0002AC-5

inline with Raytheon methodologies, but does not exclude interfacing MO with commercially
available CAD systems in the future. The key to interfacing MO with a large base of CAD
systems is the utilization of th= STEP standard by the commercial CAD industry. See reference

10 in section 2 for details on the RAPIDS Data Dictionary.

3.3.2 Product (STEP) Models

All data required for the MO system is stored in STEP physical files. The reason behind the
use of STEP physical files is that STEP is the emerging international standard for the exchange
of data between automation systems. Access to the STEP files is provided through the STEP
Toolkit (STEP Tools Inc.). The Toolkit provides a means of reading and writing STEP entity
instances through a C++ class library. This class library is currently being updated to adhere to
the ISO Part 22 SDAI (Standard Data Access Interface) specification.

At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated
Placement and Interconnect Design System) database. Two interfaces were developed to

support the transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the RAPIDS to STEP interface which
maps RAPIDS data items into instantiated STEP entities. An information model using the
EXPRESS information modeling language was created based on the RAPIDS database. The
EXPRESS information model was compiled using the STEP Tools express2c++ compiler,
which generated a STEP schema and a C++ class library. The class library consists of methods
for creating and referencing persistent instances of the STEP entities which are stored in a
ROSE database. The STEP schema is used by the STEP Tools STEP filer for reading and
writing the STEP physical file.

The MO system uses the STEP data directly, as well as, for information exchange between
the members of the product design team. For demonstration purposes, we will have the top
level team using RAPIDS. This is not a requirement for using the MO system. The only
requirement is that the top level team and the lower level teams be capable of creating,

exchanging and using the STEP physical file.

The Manufacturing Team passes back a consolidated manufacturing position to the product
design team. To aid in the generation of a consolidated position, conflict resolution and design

merging must be supported. This is done using the STEP Toolkit from STEP Tools Inc. The

16

UNCLASSIFIED
CDRL No. 0002AC-5

diff tool reads two versions of a design and creates a delta file. The difference report generator
reads the difference file and the original design, and presents each STEP entity and its attributes

with the original values and its change state clearly marked with an asterisks.

Once the conflicts of the Manufacturing team members have been resolved, design versions
are merged using the STEP Tools sed tool. The sed tool reads the delta file created by the diff
tool and updates the original design version. This updated version of the design will be
transferred back to the top-level product team as the Manufacturing Team’s consolidated

position.

3.3.3 Process Models

The key to performing manufacturability analysis is to characterize the fabrication and
assembly processes. In MQ), this characterization is implemented as a manufacturing process
representation and selection algorithm. Basing manufacturing cost analysis on a detailed
description of the process provides visibility into the relationship between the design attributes
and the manufacturing process. This allows the engineer to focus on manufacturing cost
drivers and their causes. By characterizing the process in this man er, the manufacturing
engineer is able to review the process which will be used to produce the product and be readily

able to consider alternative manufacturing processes and their consequences.

Following this logic, it makes sense to capture the expert’s process planning knowledge
into a process selection model so that the relationship between the product entities and the
process selected to fabricate the product is explicitly defined. This does not mean that there is a
one to one relationship between the design entities and the process steps. In some areas, such
as PWB, the design may be implemented using different technologies, each of which implies a
certain process, such as surface mount versus through-hole technology. In other cases, there
are multiple processes that can be used to produce the same entity. This is most prevalent in the
metal fabrication (machining) area wh.se often a number of processes (investment casting.

milling) are capable of producing the part.

There were two development challenges: building a data schema to represent the
manufacturing process such that it can be used for selection and costing, and building a
selection logic algorithm that adequately represents the planning logic employed by expert

process planniag.

17

UNCLASSIFIED
CDRL No. 0002AC-5

Normally in a manufacturing plant, the overall process for a given discipline is known and
recorded in the form of a flowchart. This flowchart is a block diagram listing of each and every
process within that discipline. The order of those operations is structured so that it is the default
ordering of how products flow. If a process gets repeated, it generally shows up in each
repeated point in the flow chart. These flowcharts usually employ a rudimentary decision logic
scheme. As such it represents the available processes in a pick list fashion. Pictured in figure

3.3-2 is a typical manufacturing process flow for printed wiring boards.

Create Automatic
Manufacturing | g l";::ﬁz raﬂg E[:Sh =] Inner Layer
Data Package 4 Inspection

Laminate Plate/Image/
andDrill |~ Plate & Ecch Rout
Outer Layers

Bare Board . Auto Insert
Test —— MarkBoard b3 oy ond Place

T R T e

Manual Flow Solder/ Manual

Assembly Reflow Assembly
Clean
—
[’ In-Circuit » Bunctional Conformal
Test IR Coat

Figure 3.3-2 Printed Wiring Board Manufacturing Flow

The logic representation method that Raytheon developed for this task is based on prior
work in process selection. The model is hybrid of decision tree and rule based processing. The
decision tree representation was selected because it allows the system to display the basic flow

of the process in a presentation format similar to what the manufacturing engineers are used to

1%

UNCLASSIFIED
CDRL No. 0002AC-5

with their flowcharts. The decision informs the user of the basic flow of the overall process
while letting the user plan at various levels of abstraction. These levels include the process, an
organized group of manufacturing operations sharing characteristics, the operation, a common
unit of work that is performed on the part, and the operational step, which is an elemental unit
of work within an operation. By defining the levels as we have, a hierarchical planning strategy
is enabled. Using this schema, we can reason about alternative processes, plan the operation
flow within the selected process, and then detail the individual steps of that operation, such as

set-up ar.d run time elements.

The reasoning process is guided by the representation of the tree structure which sets the
initial search evaluation order, and the rule processing mechanisms. The reasoning logic is
attached to individual activities in the tree. These rules are used to evaluate the node. The
purpose of the evaluation is to cause selection of the node. If a rule is evaluated as true then the
search continues past that node to evaluate lower levels. As the tree is evaluated. essentially the
rules look at part characteristics and other node values(T/F), operations and operation steps are
stored to form the process sequence. Each operation in the process sequence is evaluated for

labor content to determine the standards.

The system also has the ability to store alternative models of a particular process. This
capability allows the process engineer the ability to explore alternative process approaches and
plan process improvements. Figure 3.3-3 illustrates a sample assembly hierarchical tree for

printed wiring boards.

19

UNCLASSIFIED
CDRL No. 0002AC-5
1
Printed
Wiring
Assembly
Sequential
1 1
2 Kit 1 insert 12 Mech.
Materials Component Assembly
| Concurrent
1 1
3 8
PWB Component
] Sequential Sequential
[| [1
* PWB ’ PWB *Purchase ||'® Comp
Fabrication Prep Comps Prep
TSequential
[i

T
Substrates rMLB

Figure 3.3-3 Printed Wiring Assembly Process Model

3.3.4 Manufacturing Analyzer

There are three capabilities provided in the Manufacturing Analyzer module: process
analyzer, yield and rework analyzer, and cost estimator. The sub-sections to follow describe

each capability.
3.3.4.1 Process Analyzer

In order to perform cost and yield analysis on a design, the manufacturing process must be
modeled. The MO process model supports a hierarchical tree based model of a manufacturing
enterprise. Processes, operations and steps are defined for a manufacturing activity. Rules are
defined which tie the product data to the processes, operations and steps. The selection rules, if

satisfied, will trigger the selection of that process, operation or step.

An object-oriented methodology has been employed to implement the model. To represent
processes, operations, and steps in the tree structure, a generic Manufacturing Activity class
named “MfgSpec” was defined. The MfgSpec objects contain information that is common to

processes, operations, and steps. Within each MfgSpec is a reference to an “info” object. This

20

UNCLASSIFIED
CDRL No. 0002AC-5

info object contains the information specific to the type of manufacturing activity being

modeled (i.e. process, operation, or step).

The Manufacturing Analyzer’s selection methodology is done by traversing the process
model in depth-first fashion. The logic at each manufacturing activity node will be evaluated to
see if this is an applicable path to follow. The selected nodes are added to an analysis tree
which is also modeled as a general purpose tree structure. After the entire process model has
been evaluated and the applicable nodes identified, the analysis tree created during process

selection is traversed in a post-order fashion so that the time and cost can be calculated.
3.3.4.2 Yield & Rework Analyzer

The yield and rework analyzer provides the capability to calculate yield and rework rates for
the selected processes associated with a product design. This part of the analysis calculates the
yield and/or rework rate on an operation level within the process. The rate is calculated based
on the design entities influence on the operation. The yield and/or rework rate for each design
entity/entities associated with an operation is calculated through the evaluation of a rule, which
has a corresponding equation attached. If the rule evaluates to true, then the equation is
calculated to provide the yield or rework rate. The rate equations may include references to the
existence, value, or quantity of product design entities. An example yield rule and

corresponding rate attached to an operation is as follows:

Xield Data;
Design Features Rule Scrap Rate
aspect ratio < 5.0 & aspect ratio > 4.0 0.05000
aspect ratio <= 4.0 & aspect ratio > 2.0 0.02000

The total yield rate for an operation is calculated by using the weighted average of the
constituant parts. The total rework rate for an operation is calculated by summing up the results

of each rework occurrence.
3.3.4.3 Cost Estimator

The cost estimator calculates the recurring manufacturing cost for each activity in the

process sequence. The following calculations are performed:

+ Labor standards for each resource attached to a process, operation, and step are calculated

for setup and run time utilization. The value for each is calculated through the evaluation

21

UNCLASSIFIED
CDRL No. 0002AC-5

of an equation which may include reference to the existence, value, or quantity of design
entities in the product data. Each resource has an associated cost in terms of an
appropriate measure. For example, a labor resource has an associated cost in terms of

dollars per time unit.

*

Estimated ideal cost for each process, operation, and step is calculated from labor
standard values multiplied by the wage rate of the labor grade or bid code of the
resource(s) performing the operation, and the production efficiency value for that

operation.

» Rework operations are calculated based on the rework rate determined by the yield and
rework analyzer multiplied by labor standards of the resources for the rework condition.

The labor grade wage rates and production efficiencies are then applied.

+ For each operation, the estimated actual cost is calculated by multiplying the estimated
ideal cost by the number of units processed, including both good and scrapped units. The
number of units processed by each operation are calculated from the value of the required
good units at the subsequent operation divided by the yield at the operation under
evaluation. For example, if the desired production quantity is 100 boards and operation 1

has a scrap rate of 5%, then the quantity of required units for operation 1 is 105.

» The total estimated ideal cost and total estimated actual cost for each sequence of
processes are calculated by rolling up the individual cost of steps into operations, and
operations into processes. The estimated actual cost for a good unit is calculated by
dividing the total estimated actual cost for the process by the number of good units

produced.

3.3.5 Manufacturing Advisor

The manufacturing advisor provides the capability to view the results produced by each

activity participating in an analysis. The advisor includes the following capabilities:

* A mechanism for selecting one or more manufacturing analyzer runs for comparing

and/or displaying the results.

22

UNCLASSIFIED
CDRL No. 0002AC-5

» Graphical capabilities (i.e. line, bar, stacked bar and pie charts) for comparing and
displaying the process, yield, rework, or cost versus a processes or operations for one or

more manufacturing analyzer runs.

* A reporting capability which prints analyzer resuits to the screen or file for one or more

runs including process sequence, yield and rework, and cost.

* The capability to summarize design entities causing manufacturing guideline violations
(interface to the RM) across multiple processes. Report recommendations on these

guideline violations.

* A final manufacturing summary report, identifying cost drivers, for each process
contributing to a multi-process analysis for a given design database after completion of

the manufacturing optimization process.

Provided below in figure 3.3-5 is a sample of the type of graphical display the user could

see for a yield versus process comparison graph.

$ ple & stacked bar

Yield versus Process

MB SBl sB? SB3 SB4 SES b6 S87 spg

g“ — A Analysis Bl —@— Analysis B2 —e—- Analysis a3 |

Figure 3.3-5 Sample Yield versus Process Comparison Graph

3.3.6 Process Modeler

The process modeler provides the capability to model the selection logic of the
manufacturing process. The process model used in the MO system is designed as a hierarchical

planning system. The hierarchical planning system is developed as a general purpose tree

23

UNCLASSIFIED
CDRL No. 0002AC-5

structure. The hierarchical tree consist of Manufacturing Activity nodes. Each Manufacturing

Activity node consists of the following:

« Reasoning Logic - If these rules are satisfied, then the activity node is included in the total

process analysis model.

« Manufacturing Data - There are three type of manufacturing data supported in the MO
hierarchy model. The three data types are processes, operations, and steps. The data will
be modeled by linking manufacturing processes to operations, and operations to steps.

Each operation is annotated with its associated yield and rework rates.

» Resources - At each process, operation, or step node there is a list of resources attached.
A resource is any facility, person, equipment, or consumable material used in the

manufacturing process.

* Ordering - The children of a Manufacturing Activity node are defined with an imposed

ordering of a concurrent or sequential flow when building the model.

The MO system allows the manufacturing specialists to capture and maintain multiple
copies of process models through a set of utilities. The utilities provide the model developer
with the tools necessary to graphically build and view the process logic tree, reasoning logic,
yield/rework, resources, and labor standards. Through the use of these utilities, the process
team has the ability to modify the process model data, to explore alternative process approaches
and plan process improvements, and then analyze the effects of these changes on the product
cost. The user interface consist of pull down menus and pop up forms to allow adding,
copying, moving, deleting, editing, and printing of the processes in the hierarchical tree.
Pictured below in figure 3.3-6 is the main user interface window for the Process Modeler with

a sample process model displayed in a list view.

24

e

MO - Process Model
File Edit View Print

UNCLASSIFIED
CDRL No. 0002AC-5

Printed Wriring Assembly
I-—>Kit Product Materials
I—>Printed Wiring Board
|—>PWB Fabrication
1—>Substrates
|—>Multi Layer Board
I1-—->PWB Prep
1-->Kit Components
{——>Purchase Components
I—>Component Preparation
|——>Component Insertion / Onsertion

Figure 3.3-6 Process Modeler User Interface Window

(38
N

UNCLASSIFIED
CDRL No. 0002AC-5

4 . User Interface Screens

The main user interface window for MO provides access to the various modules within the
system, including the product and process STEP files, the manufacturing analyzer, the
manufacturing advisor, the process modeler, and system help. Figure 4-1 depicts the MO main

window.

File fAnalyzer Advisor Modeler

4.1 File Menu

The File menu provides a means to select and edit the product and process data and
provides access to two translators. Rapids2Step translates PWB design data from a Raytheon
propriety format to STEP. Step2Rapids translated a PWB design from STEP to a Raytheon
propriety format. Figure 4.1-1 illustrates the MO main window with the File menu pulled

down.
. anufacturing Optimization e
File| Analyzer Advisor Modeler Help
STEP Data ... -

Process Models ...
RAPIDS to STEP
STEP to RAPIDS
STEP Editor ...

[

M Exit |

Figure 4.1-1 File Options

26

UNCLASSIFIED
CDRL No. 0002AC-5

4.1.1 Product/STEP Data Selection

MO allows the user to select a product/STEP data file for analysis, or to edit a STEP file in
the STEP Toolkit Editor. When the STEP Data button is selected, figure 4.1-2 is displayed. A
user performs a selection for choosing a design database to analyze or a process model for use
during analysis. When the Edit button is selected the STEP Editor from STEP Tools, Inc. is
invoked with the selected STEP file loaded. The STEP Editor enables the user to add, delete,
and modify STEP entity instances.

Filter
P net/caesun5/usr3/users/lal iberty/demos/*, rose

Directories Files

pdpdemo. rose
‘demos/, . smal ldemo.rose
‘demos/pdp
‘demos/pdpdemo
’‘demos/smal ldemo

D T
Selection

r/net/caesmS/usr?s/tmrs/ 1al iberty/demos/,]

[o] {cancel| | Help |

Figure 4.1-2 Product Data Selection/Edit Menu

4.1.2 Process Model Selection

The MO system allows the manufacturing engineer to capture and maintain multi;;le copies
of process data models through a set of utilities. Through the use of these utilities, the process
team has the ability to modify the process model data, to explore alternative process approaches
and plan process improvements, and then analyze the effects of these changes on the product
manufacturing cost. Figure 4.1-3 shows the user interface provided for process model

selection.

27

UNCLASSIFIED
CDRL No. 0002AC-5

Filter

‘net/caesun5/usr3/users/lal iberty/MO/PROTO/ %, process, step

Directories Models

N | B} [cca.process.step lf
CCA.process.step
CCAl.run
CCA2.run

FAB.run

FAB1.run
FAB2.run

FE 2
Process Model Selection
/net/caesunS/usr3/users/1al iberty/M0/PROTO/

Filter Cancel

Figure 4.1-3 Process Model Selection Menu

4.1.3 RAPIDS to STEP Translator Interface

Rapids2step is a C++ application that utilizes the ROSE database and tools developed by
STEP Tools Inc. The program reads the RAPIDS Structured and Library Databases
(RSD/RLD) using the RAPIDS Procedural Interface. Once all of the records have been read
from the RSD and RLD databases and the corresponding STEP object lists have been created,
the STEP file is created and the STEP objects are written to it by the ROSE STEP filer. See
figure 4.1-4 for an illustration of rapids2step process.

[RAPIDS
Procedural
Interface

Figure 4.1-4 RAPIDS to STEP Data Flow

The MO system provides the user with an interface to the rapids2step translator. The

interface is shown in figure 4.1-5.

28

I .

UNCLASSIFIED
CDRL No. 0002AC-5

Figure 4.1-5 RAPIDS to STEP Form

4.1.4 STEP to RAPIDS Translator Interface

Step2rapids is also a C++ application that utilizes ROSE and tools develc, . by STEP
Tools Inc. The program reads a STEP file conforming to the EXPRESS schemas developed as
part of this project. The ROSE STEP filer is used to read the STEP file into instances of classes
created by the express2c++ compiler. Each of the STEP object lists is traversed and for each
object in the list an appropriate C structure corresponding to the RAPIDS procedural interface
is created and its fields are populated with the values of the corresponding attributes of the

STEP object. See figure 4.1-6 for an illustration of the step2rapids process.

Figure 4.1-6 STEP to RAPIDS Data Fiow

The MO system provides the user with an interface to the step2rapids translator. The

interface is shown in figure 4.1-7.

29

UNCLASSIFIED
CDRL No. 0002AC-5

f
)
=
g
z
&

Enter Design STEP File

Enter RAPIDS Design Directory

%] b=l [

Figure 4.1-7 STEP to RAPIDS Form

4.2 Analyzer Form

The MO system provides the user with the ability to perform a manufacturability analysis
based on a selected manufacturing process model versus a particular product design database
through the analyzer button on the main window. The analyzer determines the appropriate
processes required to build the product based on the selected process model, calculates the
overall yield and rework rates of processes, operations, and steps based on the selected process
flow, calculates the ideal time to perform the processes, operations, and steps. The yield rates
are incorporated to project the estimated actual times. The cost utilizes the ideal and estimated
actual labor times by multiplying them with the resource(s) labor rate(s) to obtain the ideal and
estimated actual cost of each process, operation, and step, as well as the cost of the entire part.
When a user selects the analyzer button, the system begins the cycle of selecting the applicable
processes, calculating the yield and rework, and finally to determine the ideal and actual
estimated cost of the part under analysis. The user can then select the type(s) of analysis to be

performed.

4.3 Advisor Window

The Manufacturing Advisor module provides the capability of viewing the analyzer results.
The user can select analysis runs to view. The user can display process, quality, or costing
results as graphs, and can also view complete analysis data to the screen or to file in report
format. Figure 4.3-1 illustrates the Manufacturing Advisor window which is displayed when

the user hits the Advisor button on the Main Window.

30

UNCLASSIFIED
CDRL No. 0002AC-5

MO - Adviso
File Graphs Reports

[PuB_|—[WiB_ |]—

~—| _SB6 |

— SB?

s] |

< >
o

~TFigure 4.3.1 Manufacturing Advisor Window
4.3.1 Select Analysis Runs

The MO system supports viewing of one or more analysis tuns <o that the user can visually
see the results, as well as visually compare analyses. The user can select the run(s) which
he/she wants to view. The default selection is the analysis results which corresponds to the last

analyzer run performed.

4.3.2 Process Graph Display

When the Process Graph button is chosen, the selected analysis run(s) process flow is
graphically displayed. Each process is displayed as a square button with the name of the
process shown inside. Figure 4.3-2 illustrates the resulting process flow graph for one set of

analysis results.

3l

File Graphs Reports

UNCLASSIFIED
CDRL No. 0002AC-5

Flgure43- 2 process(;raph s

The user can then choose to select a process button on the graph in order to see the analysis
detail« for that process including: process name, yield and rework percentage. production
quanzity, rework cost, ideal FAIT (Fabrication, Assembly, Inspection, and Test cost), and the
est:mated actual FAIT. Figure 4.3-3 illustrates the form that is displayed when a particular

process is selected.

UNCLASSIFIED
CDRL No. 0002AC-5

lected Process Dat

Process Name : l MLB

Yield (X) :

Rework (X) : l°

Rework ($) : Operations :

Mark Board
xide Treatment
Bake Panels
FAIT ($) : Laminate
Stress Relief

Quantity :

Actual FAIT (s)[gz.};\

Figure 4.3-3 Process Results Viewing Form

4.3.3 Quality Graphs

The MO system provides for graphically displaying the quality results associated with
analysis runs including graphs for yield, rework, and production quantity. Figure 4.3-4

illustrates the Advisor Window with the Quality Graphs menu pulled down.

Quality Graphs]
Time / Cost Graphs b} Rework
Production Quantity b

Figure 4.3-4 Quality Graphs

UNCLASSIFIED
CDRL No. 0002AC-5

4.3.3.1 Yield Graphs

The type of yield quality graphs available are yield rates versus processes and yield rates
versus operations associated with a particular user selected process. The graphs are displayed
in a separate window where the user can select to display the data as a bar, stacked bar, line, or
pie chart. The yield defaulting display will be a line chart. A sample line graph of yield versus

process is depicted in Figure 4.3-5.

¥ line $ pie &> stacked bar

Yield versus Process

SB? SB3 SsSB4 SB5 SB6 SB7 SB8

Figure 4.3-5 Yield versus Process Graph

If the user wants to compare the yield rates versus process for two runs, he/she would
select the analysis runs from the form under the Select Analysis Runs button, and then select
Yield vs. Process under the Quality Yield buttons. Figure 4.3-6 illustrates a sample yield

versus process line graphs for two selected analysis runs.

34

UNCLASSIFIED
CDRL No. 0002AC-5

4 lire

< pie { stacked bar

Yield versus Process

-
> £ +
Jo

MB SBl SB? SB3 SB4 SBS SB6 SB7 SBS

— & Analysis Rl —+—- Analysis 3 |-

~—#— Analysis Rm?2

s

Figure 4.3-6 Yield versus Process Comparison Graph

4.3.3.2 Rework Graphs

The type of rework quality graphs available are rework rates versus processes and rework
rates versus operations associated with a particular user selected process. The graphs are also
displayed in a separate window, like the yield graphs, where the user can select to display the

data as a bar, stacked bar, line, or pie chart. The rework defaulting display will be a bar chart.
4.3.3.3 Production Quantity Graphs

The type of production quantity graphs available are quantity rates versus processes and
quantity rates versus operations associated with a particular user selected process. The graphs
are also displayed in a separate window, like the yield and rework graphs, where the user can
select to display the data as a bar, stacked bar, line, or pie chart. The production quantity
defaulting display will be a line chart. Figure 4.3-7 illustrates a sample quantity versus process

line graph.

UNCLASSIFIED
CDRL No. 0002AC-5

QO pie & stacked bar

Prod. QTY versus Process
A— A — 4 — A — & — &

140
130
120

110

ool
MB SBl SB2 SBl] SsSB4 SBS SB6 SB7 SBS

— &~ hAnalysis Rl

——

Figure 4.3-7 Production Quantity versus Process Graph

If the user wants to compare the production quantity rates versus process for three runs,
he/she would select the analysis runs from the form under the Select Analysis Runs button, and
then select Prod. QTY vs. Process under the Quality Prod. QTY buttons.

4.3.4 Costing Graphs

The MO system provides for graphically displaying the costing results associated with

analysis runs including graphs for time, cost, and cost details.
4.3.4.1 Time/Cost Graphs

The type of time/cost quality graphs available are time or cost versus processes and time or
cost rates versus operations associated with a particular user selected process. The graphs are
displayed in a separate window where the user can select to display the data as a bar. stacked
bar, line, or pie chart. The time default display will be a line chart. and the cost default display
will be a bar chart. Just like with the Quality graphing capabilities, the user must select the

associated process before a Time or Cost versus Operations graph can be displayed.

36

UNCLASSIFIED
CDRL No. 0002AC-5

4.3.4.2 Cost Detail Graphs

The type of cost detail graphs available are product breakdown and process breakdown
associated with a particular user selected process(es). The graphs are displayed in a separate
window where the user can select to display the data as a bar, stacked bar, line, or pie chart.
The cost details default display will be a pie chart. A sample pie chart of a product process

breakdown is shown in figure 4.3-8.

Material

Labor

Equi t

Fac:ﬂ' ity
CansumableMaterial }-
Revork -]
Scrap

|
||
2
N

4.3.5 Analysis Reports Form

The Analysis Report button provides the means to generate reports for the results produced
by each process participating in an analysis. This includes the ability to view process flows,
yield and rework, cost, and requirements. A final summary report, identifying cost drivers, for
each process contributing to a multi-process analysis for a given design database can also be
generated. Figure 4.3-9 is displayed when a user selects the analysis report button. The user

can then select the type of data that he/she wants in the output report.

37

‘SN I JN NN MR N I IR A GE TN R BN . e =

UNCLASSIFIED
CDRL No. 0002AC-5

'elect Report Tgpe(s'

{1 Process Flouw

B Yield / Rework

B Costing

{1 Requirements

{1 Final Report

Cancel Help

: Analysus Reportsorm T

Provided below is a sample report generated from the Manufacturing Advisor based on the
process flow and corresponding yield results for a PWB Fabrication process.

Fabrication P Selection/C Estimation R
MLB - layers 1,14 OVERALL YIELD is 94 percent

10 _Description Actual Rewor, Yi Rework — # Units
10 mark part no 0.123 0.12 0.00 100 0.000 137
30 oxide treat 1.111 1.11 0.00 100 0.000 137
40 bake panels 0.444 0.44 0.00 100 0.000 137
50 layup 3.123 3.12 0.00 100 0.000 137
60 laminate 0.600 0.80 0.00 94 0.000 137
80 route excess 0.715 0.92 0.00 100 0.000 128
90 oxide strip 0.250 0.32 0.00 100 0.000 128
110 drill tooling 0.220 0.28 0.00 100 0.000 128
130 drill 12.123 15.12 1.23 92 0.005 128
160 electroless 0.661 0.66 0.00 100 0.000 117
170 copper panel 0.555 0.55 0.00 100 0.000 117
180 electrostrike 0.512 0.70 0.00 98 0.000 117
Fabrication Yield Analysis R
MLB - layers 1, 14 OVERALL YIELD IS 94 percent
Opno Design Feature Description Value Scrap Per Feqtur¢ Opno Yield
6(14 layers and 8 substrates N/A 6.000 94
130 annular ring 8.00 8.000 92
180 aspect ratio 4.00 2.000 9%
3%

UNCLASSIFIED
CDRL No. 0002AC-5

4.4 Modeler Window

The Process Modeler will provide manufacturing engineers with the ability to model the
manufacturing processes of their products. The process model used in the MO system is
designed as a hierarchical planning system. The hierarchical planning system is developed as a |
general purpose tree structure. The hierarchical tree consist of Manufacturing Activity nodes.

Each Manufacturing Activity node consists of the following:

« Reasoning Logic - If these rules are satisfied, then the activity node is included in the total

process analysis model.

« Manufacturing Data - There are three type of manufacturing data supported in the MO
hierarchy model. The three data types are processes, operations, and steps. The data will
be modeled by linking manufacturing processes to operations, and operations to steps.

Each operation is annotated with its associated yield and rework rates.

+ Resources - At each process, operation, or step node there is a list of resources attached.
A resource is any facility, person, equipment, or consumable material used in the

manufacturing process.

* Ordering - The children of a Manufacturing Activity node are defined with an imposed

order of concurrent or sequential flow when building the model.

The Process Modeler provides functionality to create new manufacturing activity nodes and
edit, copy, and delete existing nodes. Included in this functionality is a means to specify
selection rules for the manufacturing activity nodes, define the manufacturing data (i.e.
process, operation, or step) attached to the activity node, and identify the ordering for the
children activities as either concurrent or sequential. Associated with each operation are scrap
and rework rates. The Process Modeler window is shown in Figure 4.4-1. A sample process

model is displayed.

35

UNCLASSIFIED
CDRL No. 0002AC-5

MQ - Process Modelers
File Edit View Print

Printed Wriring Assembly
I-—>Kit Product Materials
|—>Printed Wiring Board
I-->PWB Fabrication
|—->Substrates
|-—>Multi Layer Board
I——>PWB Prep
I-->Kit Components
| -—>Purchase Components
| ~—>Component Preparation
I-->Component Insertion / Onsertion

Figure 4.4-1 Process Modeler Window

The user is provided the ability to create new process models and select, delete. and copy
existing process models. These operations are done through the Process Model Selection
window shown in figure 4.4-2 which is accessed by selecting the Models icon from the

Process Model menu bar shown in figure 4.4-1.

40

UNCLASSIFIED
CDRL No. 0002AC-5

rocess Model Selection

Filter

‘net/caesunS/usr3/users/lal iberty/M0/PROTO/%,process,step

Directories Models

S | P} [cco.process.step] B
CCA.process.step
CCAl.run
CCAZ.run

FAB.run

FAB1.,run
FAB2.run

I a2
Process Model Selection

/net/caesunS/usr3/users/1al iberty/M0/PROTO/

Cancel

Figure 4.4-2 Process Model Selection Window

4.4.1 Manufacturing Activity Node Definition

Defining a new process node will consist of selecting the Add icon from the Process
Modeler Window menu bar and specifying the name of the node to the Manufacturing Activity
Specification window shown in figure 4.4-3. The interface will then support activity data type

selection (process, operation, or step), child ordering, selection rules, and resources.

Editing existing nodes will be accomplished by graphical selection of the desired node from
the process modeler window (see figure 4.4-1) via the mouse. Once the activity has been
selected, the Manufacturing Activity Specification window will be displayed with the data for
the selected activity node loaded. Existing nodes are deleted by selecting the Delete icon and
then the activity node to be deleted.

41

UNCLASSIFIED
CDRL No. 0002AC-5

Component Insertion / Onsertion

Parent : |Printed Wriring Assembly

Description :

Insert / mount components into/onto board,

Activity :

4 Process

© Dperation
< Setup Step
< Action Step

Child Ordering
& Serial

4 Concurrent

.
-

| Rules ... |
==
|

-]

[Yield ...

[Rework ..

Figure 4.4-3 Manufacturing Activity Specification Window

4.4.2 Selection Rules Definition

The window in figure 4.4-4 will support the creation, modification, and deletion of

selection rules for an activity node. There will be an implicit OR between each of the rules in

the list for an activity node, i.¢., if one of the rules in the list is satisfied, then the node will be

selected.

Process Name :

MLB_

net_rec.routes

net_rec.metal_areas

pad_rec.location.x | pad_rec.locatio

Edit

Delete
- -

Figure 4.4-4 Selection Rules Window

42

UNCLASSIFIED
CDRL No. 0002AC-5

When either a new rule is to be defined or an existing one modified, the Rule Specification
window shown in figure 4.4-5 will be presented. This window will also be utilized to specify

scrap and rework rate rules and operation setup and operation run time rules.

ule S
| Rule

{|oute_rec | via rec | pin_rec | metal_area_rec

Attributes

segment_rec signal STR
ww_route_data_r route_type STR

status STR
ListOfroute_ret target_name pin_name_vr
ListOfsegment_r ob ject_name pin_name_r
via_rec target_pin pin_rec

Entity.Att.Att... :

]ndd to Rulel Joute_rec
Coer] g
| R N
< |
L |
=]

Figure 4.4-5 Rule Specification
4.4.3.1 Yield Rate Definition

Attached to every operation is a list of yield rates. A yield rate can be associated to a given
entity attribute or a set of entity attributes. This is specified through an ordered list of rules and
yield rates. The yield rate is established using the yield rate equation attached to the first yield
rule in the ordered list that is satisfied. A user interface supporting this functionality is shown
in figure 4.4-6. The yield rules and the yield rates are specified through the Rule Specification
Window shown in figure 4.4-5.

43

UNCLASSIFIED
CDRL No. 0002AC-5

Operation Name : Etch

Yield Rules

route_rec.line_width < 8,0 & copper_wei: New
route_rec.line_width <= 10,0 & copper_u
route_rec.line_width <= 12,0 & copper_w
route_rec.line_width < 8,0 & copper_wei:
route_rec.line_width <= 10.0 & copper_w

B
Yield Rate
99.2

Edit

g

:Cancell I Help I

Figure 4.4-6 Yield Specification Window

4.4.3.2 Rework Rate Definition

Attached to every operation is a list of rework rates. A rework rate can be associated for a
given entity attribute or a set of entity attributes. This is specified through an ordered list of
rules and rework rates. The rework rate is established using the rework rate equation attached
to the first rework rule in the ordered list that is satisfied. A user interface supporting this
functionality is shown in figure 4.4-7. The rework rules and rates is specified through the Rule
Specification Window shown in figure 4.4-5. Also attached to each rework rule rate pair is a
list of resources that is required to complete the rework activities. The resources used along
with their associated setup and run time equations is specified using the Resource Utilization

interface shown in figure 4.4-8.

44

UNCLASSIFIED
CDRL No. 0002AC-5

Operation Name :

Rework Rules

New

e e = Edit
route _rec.line_width < 8. N _
=

Jroute_rec.line_width * 1.8976 ! Edit |

Resources

Figure 4.4-7 Rework Specification Window
4.4.4 Resource Definition

For each process, operation, or step performed, a list of needed resources can be specified.
When resources are utilized the amount of setup time and run time that is required for the
resource must also be provided so that proper costing can be calculated. Figure 4.4-8 shows
the Resource Utilization interface that will allow the process modeler to construct the list of
resources utilized by a process, operation, or step. The setup and run time equations are

specified using the Rule Specification interface shown in figure 4.4-5.

UNCLASSIFIED
CDRL No. 0002AC-5

: ~;;;;;;;ff35}éé;
Process/Operation : w8 g
Resources Resources Utilized 1
82 o
{ |Wave Solder Acid Batch 3
{ |Acid Batch 3
: Photo Lithographeil] Technician i 2
k1 |Technictan 1 Technictan 2 &
, Technician 2 Remove Process Engineer
| [Rorove] K =
Setup Time i
{ 245 Edit
[E] |
z 3

| <1 - » | :

Run Time

267 _ Edit |
§ I :
3 I < - - | g
E Cancel ! Hel i
1 [] [velp :

Figure 4.4-8 Resource Utilization Window
Figure 4.4-9 show the Resources interface which lists all of the Resources that are
currently stored in the process model. The interface supports creating new resources, and

editing and deleting existing resources. To access the Resources interface the user would select

the Resources icon from the menu bar shown in figure 4.4-1.

Wave Solder

Acid Batch

Photo Lithographer
Technician 1
Technician 2

Cancel

Figure 4.4-9 Resource Window

The Resource Specification interface is shown in figure 4.4-10. This interface 1s used for
specifying new resources and modifying existing ones. Attached to each resource is a list of
user definable parameters or attributes. Each resource falls into one of the following four

categories: labor, facility, equipment, or consumabiu resource.

46

I % R S —

UNCLASSIFIED
CDRL Ne. 0002AC-5

Resource Name : | Acid Bath_

Parameters

New

Edit

Delete

Resource Type

£ Labor

Facilit
O Facility Edit

$ Equipment

4 Consumable Material

0K Cancel Help

Figure 4.4-11 shows the interface for specifying a facility resource.

Cost Per Square Foot Per Time Unit:

b

Square Feet Allocated :

[Cancell I Help J

Figure 4.4-11 Facility Resource Specification Window

Figure 4.4-12 shows the interface for specifying an equipment resource.

47

' Figure 4.4-10 Resource Specification Window

UNCLASSIFIED
CDRL No. 0002AC-5

Equipnent Resource Specification IS

Cost Per Time Unit:

Equipment Category :

’Ealcell [Help l

- — —
Figure 4.4-12 Equipment Resource Specification Window

An individual resource, consumable material pair is specified in the Resource/Consumable

Specification Window shown in figure 4.4-13.

Resources Consumming Resources

Wave Solder Technician 1
Phota Lithographe
Technician 1
Technician 2

|« S— - |

Units Exhausted Per Time Unit :

2,56

Figure 4.4-13 Resource/Consumable Specification Window

Figure 4.4-14 shows the interface for specifying labor resources.

438

UNCLASSIFIED
CDRL No. 0002AC-5

Job Code - Rate

Cancel I

Figure 4.4-14 Labor Resource Window

Figure 4.4-15 shows the interface for specifying a labor rate resource.

Figure 4.4-15 Labor Rate Resource Specification Window

49

UNCLASSIFIED
CDRL No. 0002AC-5

5. C++ Header File Definitions

This section provides the C++ header files for the MO system. These files contain the

definition of the pertinent classes and objects in the system.

The class specifications defined in this section were developed as follows: the EXPRESS

information modeling language was used to model both the product data and the MO process

data (Section 6 provides a complete EXPRESS schema specification of the product and process
models). Using the express2c++ compiler which is part of the STEP Programmers Toolkit
(STEP Tools Inc.), the EXPRESS entities were translated into C++ classes. The generated
classes are structured such that all of the class attributes are declared as private. Public access
and update methods were generated for each private attribute. Each generated class was then

extended to support the additional calculation and monitoring methods required for the system.

Figure 5-1 illustrates the top-level class categories for the MO system. The sections to

follow provide the details of the class specifications of each of these categories.

Modeler
J
ProductDesign ProcessModel
\ /
Analyzer
J
RequirementTask f——— Advisor ;::llnteﬁace

Figure 5-1 Top-Level Class (Categories) Diagram

50

UNCLASSIFIED
CDRL No. 0002AC-5

5.1 ProductDesign

An EXPRESS product model was developed to model PWB data and electronic component
library data (See section 6.2 for this specification). The model consists of approximately
twenty interrelated EXPRESS schemas consisting of more than one hundred and fifty entities.
C++ source code was produced by the express2c++ compiler as described above. The
following specification is for the “route_rec”” C++ class which corresponds to the “route_rec”
EXPRESS entity defined in section 6.2.1.15.

/* Class Declaration */
ROSE_DECLARE (route_rec) : virtual public RoseStructure {
private:
STR PERSISTENT_signal;
STR PERSISTENT _route_type;
STR PERSISTENT _status;
pin_name_rec * PERSISTENT _target_name;
pin_name_rec * PERSISTENT_object_name;
pin_rec * PERSISTENT _target_pin;
pin_rec * PERSISTENT _object_pin;
point_rec * PERSISTENT _target_loc;
point_rec * PERSISTENT object_loc;
BOOL PERSISTENT_protect;
int PERSISTENT _target_layer;
int PERSISTENT _object_layer;
ListOfsegment_rec * PERSISTENT _path;
int PERSISTENT _shield_id;
int PERSISTENT _pin_pair_index;
pin_pair_rec * PERSISTENT_pin_pair;
ww_route_data_rec * PERSISTENT _ww_data; STR PERSISTENT _comment;
public:
ROSE_DECLARE_MEMBERS(route_rec);

/* Access and Update Methods */

/* signal Access Methods */

STR signal()

{ return ROSE_GET_PRIM (STR,PERSISTENT _signal);
}

void signal (STR asignal)
{ ROSE_PUT_PRIM (STR,PERSISTENT _signal,asignal); }

/* route_type Access Methods */

STR route_type()

{ return ROSE_GET_PRIM (STR,PERSISTENT _route_type);
}

void route_type (STR aroute_type)
{ ROSE_PUT_PRIM (STR,PERSISTENT _route_type,aroute_type); }

51

UNCLASSIFIED
CDRL No. 0002AC-5

/* status Access Methods */

STR status()

{ return ROSE_GET_PRIM (STR,PERSISTENT _status);
}

void status (STR astatus)
{ ROSE_PUT_PRIM (STR,PERSISTENT _status,astatus); }

/* target_name Access Methods */

pin_name_rec * target_name()

{ return ROSE_GET_OBJ (pin_name_rec, PERSISTENT _target_name);
}

void target_name (pin_name_rec * atarget_name)
{ ROSE_PUT_OB]J (pin_name_rec,PERSISTENT _target_name,atarget_name); }

/* object_name Access Methods */

pin_name_rec * object_name()

{ return ROSE_GET_OB]J (pin_name_rec, PERSISTENT_object_name);
}

void object_name (pin_name_rec * aobject_name)
{ ROSE_PUT_OBJ (pin_name_rec,PERSISTENT_object_name,aobject_name); }

/* target_pin Access Methods */

pin_rec * target_pin()

{ return ROSE_GET_OBJ (pin_rec,PERSISTENT _target_pin);
}

void target_pin (pin_rec * atarget_pin)
{ ROSE_PUT_OB]J (pin_rec, PERSISTENT _target_pin,atarget_pin); }

/* object_pin Access Methods */

pin_rec * object_pin()

{ return ROSE_GET_OBJ (pin_rec,PERSISTENT_object_pin);
}

void object_pin (pin_rec * aobject_pin)
{ ROSE_PUT_OBIJ (pin_rec,PERSISTENT _object_pin,aobject_pin); }

J* target_loc Access Methods */

point_rec * target loc()

{ return ROSE_GET_OBIJ (point_rec, PERSISTENT_target_loc);
}

void target_loc (point_rec * atarget_loc)
{ ROSE_PUT_OBJ (point_rec,PERSISTENT _target_loc,atarget_loc); }

/* object_loc Access Methods */

point_rec * object_loc()

{ return ROSE_GET_OBI (point_rec,PERSISTENT _object_loc);
}

void object_loc (point_rec * aobject_loc)

52

UNCLASSIFIED
CDRL No. 6002AC-5

{ ROSE_PUT_OBJ (point_rec,PERSISTENT _object_loc,aobject_loc); }

/* protect Access Methods */

BOOL protect()

{ return ROSE_GET_PRIM (BOOL,PERSISTENT_protect);
}

void protect (BOOL aprotect)
{ ROSE_PUT_PRIM (BOOL,PERSISTENT _protect,aprotect); }

/* target_layer Access Methods */

int target_layer()

{ return ROSE_GET_PRIM (int, PERSISTENT _target_layer);
}

void target_layer (int atarget_layer)
{ ROSE_PUT_PRIM (int, PERSISTENT _target_layer,atarget_layer); }

/* object_layer Access Methods */

int object_layer()

{ return ROSE_GET_PRIM (int, PERSISTENT _object_layer);
}

void object_layer (int aobject_layer)
{ ROSE_PUT_PRIM (int,PERSISTENT _object_layer,aobject_layer); }

/* path Access Methods */

ListOfsegment_rec * path();

void path (ListOfsegment_rec * apath)

{ ROSE_PUT_OBIJ (ListOfsegment_rec, PERSISTENT _path,apath); }

ListOfsegment_rec * route_rec :: path()
{ if('PERSISTENT _path)
if(this->isPersistent())
path (pnewln (design()) ListOfsegment_rec);
else path (new ListOfsegment_rec);
return ROSE_GET_OBJ (ListOfsegment_rec, PERSISTENT _path);

/* shield_id Access Methods */

int shield_id()

{ return ROSE_GET_PRIM (int, PERSISTENT _shield_id);
}

void shield_id (int ashield_id)
{ ROSE_PUT_PRIM (int,PERSISTENT_shield_id,ashield_id); }

/* pin_pair_index Access Methods */

int pin_pair_index()

{ return ROSE_GET_PRIM (int,PERSISTENT_pin_pair_index);
}

void pin_pair_index (int apin_pair_index)

53

{

UNCLASSIFIED

CDRL No. 0002AC-5

ROSE_PUT_PRIM (int,PERSISTENT _pin_pair_index,apin_pair_index); }

/* pin_pair Access Methods */
pin_pair_rec * pin_pair()

{
}

void pin_pair (pin_pair_rec * apin_pair)
{

retorn ROSE_GET_OBJ (pin_pair_rec, PERSISTENT _pin_pair);

ROSE_PUT_OBJ (pin_pair_rec,PERSISTENT _pin_pair,apin_pair); }

/* ww_data Access Methods */
ww_route_data_rec * ww_data()
return ROSE_GET_OBJ (ww_route_data_rec, PERSISTENT_ww_data);

{
}

void ww_data (ww_route_data_rec * aww_data)

{

ROSE_PUT_OBJ (ww_route_data_rec,PERSISTENT_ww_data,aww_data);)

/¥ comment Access Methods */
STR comment()

{
}

return ROSE_GET_PRIM (STR,PERSISTENT_comment);

void comment (STR acomment)

{

ROSE_PUT_PRIM (STR,PERSISTENT_comment,acomment); }

/* Constructors */
route_rec ();
route_rec (

STR asignal,

STR aroute_type,

STR astatus,

pin_name_rec * atarget_name,
pin_name_rec * aobject_name,
pin_rec * atarget_pin,

pin_rec * aobject_pin,
point_rec * atarget_loc,
point_rec * aobject_loc,
BOOL aprotect,

int atarget_layer,

int aobject_layer,
ListOfsegment_rec * apath,
int ashield_id,

int apin_pair_index,
pin_pair_rec * apin_pair,

ww_route_data_rec * aww_data,

STR acomment);

54

UNCLASSIFIED
CDRL No. 0002AC-5

5.2 ProcessModel

The ProcessModel class is used to manage the manufacturing process models. Each
ProcessModel object contains a reference to the top node in the hierarchical process tree
structure. Each also contains the name of the model, the dates of its creation and last
modification, and the name of the author of the model. The ProcessModel objects are created
by the Modeler managing object. The Analyzer traverses the ProcessModel in order to select
the appropriate analysis plan for the ProductDesign under analysis, and calculate the
corresponding yield, rework, and cost of each selected process and operation. The analysis
plan is a subset of the original ProcessModel object. The Advisor managing object provides
viewing of the resulting Analyzer process plan. The sub-sections that follow detail each of the
ProcessModel, Resource, and ReasoningLogic classes/objects and their corresponding

methods.

5.2.1 ProcessModel Specification

/* Class Declaration */
#ifndef ProcessModel_h
#define ProcessModel_h

#include "rose.h”
#include "process_model_types.h"

/¥ CLASS INCLUDE-FILE EXTENSIONS */
#include "ProcessModel.hi”

ROSE_DECLARE (DateRec);

ROSE_DECLARE (MfgSpec);

#define ProcessModelOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET((subClass,ProcessModel)

ROSE_DECLARE (ProcessModel) : virtual public RoseStructure {
private:

STR PERSISTENT _name;

DateRec * PERSISTENT _creationDate;

DateRec * PERSISTENT_modifyDate;

STR PERSISTENT _author;

MfgSpec * PERSISTENT_topProcess;

public:
ROSE_DECLARE_MEMBERS(ProcessModel);

/* Access and Update Methods */

55

UNCLASSIFIED
CDRL No. 0002AC-5

/* name Access Methods */
STR name()
{ return ROSE_GET_PRIM (STR,PERSISTENT_name);

void name (STR aname)
{ ROSE_PUT_PRIM (STR,PERSISTENT _name,aname); }

/* creationDate Access Methods */

DateRec * creationDate()

{ return ROSE_GET_OBJ (DateRec, PERSISTENT _creationDate);

}

void creationDate (DateRec * acreationDate)

{ ROSE_PUT_OBIJ (DateRec,PERSISTENT _creationDate,acreationDate); }

/* modifyDate Access Methods */
DateRec * modifyDate()
{ return ROSE_GET_OBJ (DateRec,PERSISTENT _modifyDate);

}
void modifyDate (DateRec * amodifyDate)
{ ROSE_PUT_OBJ (DateRec,PERSISTENT_modifyDate,amodifyDate); }

/* author Access Methods */
STR author()
{ return ROSE_GET_PRIM (STR,PERSISTENT _author);

}
void author (STR aauthor)
{ ROSE_PUT_PRIM (STR,PERSISTENT _author,aauthor); }

/* topProcess Access Methods */

MfgSpec * topProcess()

{ return ROSE_GET_OBJ (MfgSpec,PERSISTENT _topProcess);

}

void topProcess (MfgSpec * atopProcess)

{ ROSE_PUT_OBJ (MfgSpec,PERSISTENT _topProcess,atopProcess); }

/* Constructors */

ProcessModel ();

ProcessModel (
STR aname,
DateRec * acreationDate,
DateRec * amodifyDate,
STR aauthor,
MfgSpec * atopProcess);

/* CLASS DECLARATION EXTENSIONS ¥/
/* Process Selection Traversal Method */
ProcessModel * SelectProcessFlow(ProductEntities *);

/* PreOrder Process Model Display Method */
void PreOrderDisplay();

/* PostOrder Process Model Display Method */
void PostOrderDisplay(MfgSpec *);

/* Calculates Labor Standards Associated With Selected Processes */

56

void CalculateLaborStds(int);

/* Determines Total Cost of each Process/Operation/Step */
void DetermineTotalCost();

/* Advisor Display Method */
void AdvisorDisplay();

};

#endif

5.2.2 MfgSpec Specification

/* Class Declaration */
#ifndef MfgSpec_h
#define MfgSpec_h

#include "rose.h"
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "MfgSpec.hi"

ROSE_DECLARE (Process);

ROSE_DECLARE (ReasoningLogic);

ROSE_DECLARE (MfgSpec);

ROSE_DECLARE (ListOfMfgSpec);

ROSE_DECLARE (Cost);

#define MfgSpecOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,MfgSpec)

ROSE_DECLARE (MfgSpec) : virtual public RoseStructure {
private:
STR PERSISTENT _id;
Process * PERSISTENT _info;
ReasoninglLogic * PERSISTENT _logic;
MfgSpecOrder PERSISTENT _ordering;
MfgSpec * PERSISTENT_parent;
ListOfMfgSpec * PERSISTENT _children;
MfgSpec * PERSISTENT _rsibling;
ListOfRoseObject * PERSISTENT _entities;
Cost * PERSISTENT _specCost;

public:
ROSE_DECLARE_MEMBERS(MfgSpec);

/* Access and Update Methods */

/* id Access Methods */

STR id()

{ return ROSE_GET_PRIM (STR,PERSISTENT _id);
}

void id (STR aid)

{ ROSE_PUT_PRIM (STR,PERSISTENT_id,aid); }

57

UNCLASSIFIED
CDRL No. 0002AC-5

UNCLASSIFIED
CDRL No. 0002AC-5

/* info Access Methods */
Process * info()
{ return ROSE_GET_OBJ (Process,PERSISTENT _info);

void info (Process * ainfo)
{ ROSE_PUT_OBJ (Process,PERSISTENT _info,ainfo); }

/* logic Access Methods */
ReasoningLogic * logic()
{ return ROSE_GE™_OBJ (ReasoningLogic, PERSISTENT _logic);

void logic (ReasoningLogic * alogic)
{ ROSE_PUT_OB]J (ReasoningLogic, PERSISTENT _logic,alogic); }

/* ordering Access Methods */
MfgSpecOrder ordering()
{ return ROSE_GET_PRIM (MfgSpecOrder, PERSISTENT_ordering);

}
void ordering (MfgSpecOrder aordering)
{ ROSE_PUT_PRIM (MfgSpecOrder, PERSISTENT _ordering,aordering); }

/* parent Access Methods */

MfgSpec * parent()

{ return ROSE_GET_OBJ (MfgSpec,PERSISTENT _parent);

}

void parent (MfgSpec * aparent)

{ ROSE_PUT_OBJ (MfgSpec,PERSISTENT_parent,aparent); }

/* children Access Methods */

ListOfMfgSpec * children();

void children (ListOfMfgSpec * achildren)

{ ROSE_PUT_OBJ (ListOfMfgSpec,PERSISTENT_children,achildren); }

/* rsibling Access Methods */
MfgSpec * rsibling()
{ return ROSE_GET_OBJ (MfgSpec, PERSISTENT _rsibling);

}
void rsibling (MfgSpec * arsibling)
{ ROSE_PUT_OBJ (MfgSpec,PERSISTENT _rsibling,arsibling); }

/* entities Access Methods */

ListOfRoseObiject * entities();

void entities (ListOfRoseObject * aentities)

{ ROSE_PUT_OBJ (ListOfRoseObject, PERSISTENT _entities,aentities); }

/* specCost Access Methods */
Cost * specCost()
{ return ROSE_GET_OBJ (Cost,PERSISTENT_specCost);

void specCost (Cost * aspecCost)
{ ROSE_PUT_OBJ (Cost,PERSISTENT_specCost,aspecCost); }

J* Constructors */

58

MfgSpec ();

MfgSpec (
STR aid,
Process * ainfo,
ReasoningLogic * alogic,
MfgSpecOrder aordering,
MfgSpec * aparent,
ListOfMfgSpec * achildren,
MfgSpec * arsibling,
ListOfRoseObject * aentities,
Cost * aspecCost);

/* CLASS DECLARATION EXTENSIONS ¥/
/* Determine Cost of Spec */
void DetermineSpecCost();

/* Calculate Spec Labor Stds */
void CalculateLaborStds(int);

/* Locate Spec parent in Results tree */
void LocateParent(MfgSpec *, ProductEntities *);

/* Deep Copy MfgSpec Node */

MfgSpec *AddMfgSpec(ProductEntities *, MfgSpec *);
/* Determine if MfgSpec is Applicable to this part */
BOOL Select(ProductEntities *);

/* Display MfgSpec */

void Display();

} .

#endif
5.2.3 Process Specification

/* Class Declaration */
#ifndef Process_h
#define Process_h

#include "rose.h"
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Process.hi”

ROSE_DECLARE (ListOfResourceUtilization);

ROSE_DECLARE (Quality);

ROSE_DECLARE (Cost);

#define ProcessOffsets(subClass) \
RoseStructureOffsets(subClass) \

ROSE_SUPERCLASS_OFFSET(subClass,Process)
ROSE_DECLARE (Process) : virtual public RoseStructure {

private:
STR PERSISTENT _name;

59

UNCLASSIFIED
CDRL No. 0002AC-5

UNCLASSIFIED
CDRL No. 0G02AC-5

STR PERSISTENT desc:

ListOfResourceUtilization * PERSISTENT resources:
Quality * PERSISTENT_qualResults;

Cost * PERSISTENT _indivRate;

public:
ROSE_DECLARE_MEMBERS (Process);

/* Access and Update Methods */

/* name Access Methods */

STR name()

{ return ROSE_GET_PRIM (STR,PERSISTENT _name);

}

void name (STR aname)

{ ROSE_PUT_PRIM (STR,PERSISTENT_ _name,aname); }

/* desc Access Methods */
STR desc()
{ return ROSE_GET_PRIM (STR,PERSISTENT _desc):

}
void desc (STR adesc)
{ ROSE_PUT_PRIM (STR,PERSISTENT _desc,adesc); }

/* resources Access Methods */

ListOfResourceUtilization * resources(*

void resources (ListOfResourceUtilization * aresources)

{ ROSE_PUT_OBJ (ListOfResourceUtilization,PERSISTENT _resources.aresources); }

/* qualResults Access Methods */

Quality * qualResults()

{ return ROSE_GET_OBJ (Quality, PERSISTENT_qualResults):

}

void qualResults (Quality * aqualResults)

{ ROSE_PUT_OBIJ (Quality PERSISTENT _qualResults,aqualResults); }

/* indivRate Access Methods */

Cost * indivRate()

{ return ROSE_GET_OBJ (Cost,PERSISTENT _indivRate);

}

void indivRate (Cost * aindivRate)

{ ROSE_PUT_OBJ (Cost,PERSISTENT_indivRate,aindivRate); }

/* Cons*ructors */
Process ();
Process (
STR aname,
STR adesc,
ListOfResourceUtilization * aresources,
Quality * aqualResults,
Cost * aindivRate);

/* CLASS DECLARATION EXTENSIONS */
/* Determines the Scrap and Rework Rates for the Process */

60)

virtual void DetermineScrapRework(ListOfMfgSpec *);

/* Determine Total Process Cost */
virtual Cost *TotalRate(ListOfMfgSpec *);

/* Calculate Process Quality */
virtual void CalculateQuality(int);

/* Calculate Process Time/Cost rates */
virtual void CalculateRates();

/* Specifies if Features are complete at this Process */
virtual int CompleteFeatures();

/* Performs Deep Copy of Process */
virtual Process *CopyProcess(ListOfRoseObject *);

/* Display for Process */
virtual void Display();

};
#endif

5.2.4 Operation Specification

/* Class Declaration */
#ifndef Operation_h
#define Operation_h

#include "rose.h”
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Operation.hi"

#include "Process.h”

ROSE_DECLARE (ListOfScrap);

ROSE_DECLARE (ListOfRework);

#define OperationOffsets(subClass) \
ProcessOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Operation)

ROSE_DECLARE (Operation) : virtual public Process {
private:
LaborClass PERSISTENT_optype;
ListOfScrap * PERSISTENT _scrap_rate;
ListOfRework * PERSISTENT _rework_rate;

public:
ROSE_DECLARE_MEMBERS(Operation);

/* Access and Update Methods */

/* optype Access Methods */
LaborClass optype()

{ return ROSE_GET_PRIM (LaborClass,PERSISTENT _optype):

}

61

UNCLASSIFIED
CDRL No. 0002AC-5

Al TR s .

AR N NN s Ay WA By A B aGn R =

UNCLASSIFIED
CDRL No. 0002AC-5

void optype (LaborClass aoptype)
{ ROSE_PUT_PRIM (LaborClass,PERSISTENT _optype,aoptype); }

/* scrap_rate Access Methods */

ListOfScrap * scrap_rate();

void scrap_rate (ListOfScrap * ascrap_rate)

{ ROSE_PUT_OBJ (ListOfScrap,PERSISTENT _scrap_rate,ascrap_rate); }

/* rework_rate Access Methods */

ListOfRework * rework_rate();

void rework_rate (ListOfRework * arework_rate)

{ ROSE_PUT_OB]J (ListOfRework,PERSISTENT _rework_rate,arework_rate); }

/* Constructors */

Operation ();

Operation (
STR aname,
STR adesc,
ListOfResourceUtilization * aresources,
Quality * aqualResults,
Cost * aindivRate,
LaborClass aoptype,
ListOfScrap * ascrap_rate,
ListOfRework * arework_rate);

/* CLASS DECLARATION EXTENSIONS */
/* Determine Operation Scrap and Rework Values */
void DetermineScrapRework(ListOfMfgSpec *);

/* Calculate Production Qty */
void CalculateQuality(int);

/* Return if Features are complete at this operation */
int CompleteFeatures();

/* Perform deep copy of the operation */
Process *CopyProcess(ListOfRoseQObject *);

/* Display Operation data */
void Display();
}.

#endif

5.2.5 Step Specification
/* Class Declaration */

#ifndef Step_h

#define Step_h

#include "rose.h”
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Step.hi"

62

UNCLASSIFIED
CDRL No. 0002AC-5

#include "Process.h"

#define StepOffsets(subClass) \
ProcessOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Step)

(.

ROSE_DECLARE (Step) : virtual public Process {
private:
StepTypes PERSISTENT _stepType;

public:
ROSE_DECLARE_MEMBERS(Step);

/* Access and Update Methods */

/* stepType Access Methods */
StepTypes stepType()
{ return ROSE_GET_PRIM (StepTypes,PERSISTENT _stepType);

}
void stepType (StepTypes astepType)
{ ROSE_PUT_PRIM (StepTypes,PERSISTENT_stepType,astepType); }

/* Constructors */

Step ();
Step (

‘S N G W um 0 am

STR aname,

STR adesc,

ListOfResourceUtilization * aresources,
Quality * aqualResults,

Cost * aindivRate,

StepTypes astepType);

/* CLASS DECLARATION EXTENSIONS */
/* Determine Operation Scrap and Rework Values */
void DetermineScrapRework(ListOfMfgSpec *);

/* Calculate Production Qty */
void CalculateQuality(int);

/* Return if Features are complete at this operation */
int CompleteFeatures();

/* Perform deep copy of the operation */
Process *CopyProcess(ListOfRoseObject *);

/* Display Operation data */
void Display();
}.

#endif
5.2.6 Quality Specification
/* Class Declaration */

#ifndef Quality_h
#define Quality_h

63

\- -

UNCLASSIFIED
CDRL No. 0002AC-5

#include "rose.h"
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Quality.hi"

#define QualityOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Quality)

ROSE_DECLARE (Quality) : virtual public RoseStructure {
private:

float PERSISTENT _scrapPercent;

int PERSISTENT _prodQty;

float PERSISTENT _reworkPercent;

float PERSISTENT _reworkCost;

public:
ROSE_DECLARE_MEMBERS(Quality);

/* Access and Update Methods */

/* scrapPercent Access Methods */

float scrapPercent()

{ return ROSE_GET_PRIM (float, PERSISTENT _scrapPercent);
}

void scrapPercent (float ascrapPercent)
{ ROSE_PUT_PRIM (float, PERSISTENT _scrapPercent,ascrapPercent); }

/* prodQty Access Methods */

int prodQty()
{ return ROSE_GET_PRIM (int, PERSISTENT _prodQty);
}

void prodQty (int aprodQty)
{ ROSE_PUT_PRIM (int,PERSISTENT _prodQty,aprodQty); }

/* reworkPercent Access Methods */

float reworkPercent()

{ return ROSE_GET_PRIM (float, PERSISTENT _reworkPercent);
}

void reworkPercent (float areworkPercent)
{ ROSE_PUT_PRIM (float, PERSISTENT _reworkPercent,areworkPercent); }

/* reworkCost Access Methods */
float reworkCost()
{ return ROSE_GET_PRIM (float, PERSISTENT_reworkCost);

void reworkCost (float areworkCost)
{ ROSE_PUT_PRIM (float,PERSISTENT _reworkCost,areworkCost); }

/* Constructors */
Quality ();
Quality (
float ascrapPercent,

64

UNCLASSIFIED

CDRL No. 0002AC-5

int aprodQty,
float areworkPercent,
float areworkCost);

/* CLASS DECLARATION EXTENSIONS */
Quality *AddQuality();

#endif

5.2.7 Scrap Specification

/* Class Declaration */
#ifndef Scrap_h
#define Scrap_h

#include "rose.h"
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Scrap.hi"

ROSE_DECLARE (Rules);

ROSE_DECLARE (Equation);

#define ScrapOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Scrap)

ROSE_DECLARE (Scrap) : virtual public RoseStructure {
private:

Rules * PERSISTENT _scrapRule;

Equation * PERSISTENT _scrapRate;

float PERSISTENT _scrapPercentage;

public:
ROSE_DECLARE_MEMBERS(Scrap);

/* Access and Update Methods */

/* scrapRule Access Methods */

Rules * scrapRule()

{ return ROSE_GET_OBJ (Rules,PERSISTENT _scrapRule);

}

void scrapRule (Rules * ascrapRule)

{ ROSE_PUT_OBIJ (Rules,PERSISTENT _scrapRule,ascrapRule); }

/* scrapRate Access Methods */
Equation * scrapRate()
{ return ROSE_GET_OBJ (Equation,PERSISTENT _scrapRate); }
void scrapRate (Equation * ascrapRate)
{ ROSE_PUT_OBIJ(Equation,PERSISTENT_scrapRate,ascrapRate); }

/* scrapPercentage Access Methods */
float scrapPercentage()

65

UNCLASSIFIED
CDRL No. 0002AC-5

{ return ROSE_GET_PRIM (float, PERSISTENT _scrapPercentage);

void scrapPercentage (float ascrapPercentage)
{ ROSE_PUT_PRIM (float, PERSISTENT _scrapPercentage,ascrapPercentage); }

/* Constructors */

Scrap ();

Scrap (
Rules * ascrapRule,
Equation * ascrapRate,
float ascrapPercentage);

/* CLASS DECLARATION EXTENSIONS */
/* Deep Copy the Scrap Object */
Scrap *CopyScrap(ListOfRoseObject *);

/* Determine if Sc rap rule should be Selected for the part under analysis */
BOOL Select(ListOfRoseObiject *);

Ik

#endif

5.2.8 Rework Specification

/* Class Declaration */
#ifndef Rework_h
#define Rework_h

#include "rose.h"
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Rework.hi"

ROSE_DECLARE (Rules);

ROSE_DECLARE (Equation);

ROSE_DECLARE (ListOfResourceUtilization);

#define ReworkOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Rework)

ROSE_DECLARE (Rework) : virtual public RoseStructure {
private:
Rules * PERSISTENT _reworkRule;
Equation * PERSISTENT _reworkRate;
ListOfResourceUtilization * PERSISTENT _resources;
float PERSISTENT _reworkPercentage;
float PERSISTENT _reworkCost;

public:
ROSE_DECLARE_MEMBERS(Rework);

/* Access and Update Methods */

66

UNCLASSIFIED
CDRL No. 0002AC-5

/* reworkRule Access Methods */

Rules * reworkRule()

{ return ROSE_GET_OBJ (Rules,PERSISTENT _reworkRule);
}

void reworkRule (Rules * areworkRule)
{ ROSE_PUT_OBJ (Rules,PERSISTENT _reworkRule,areworkRule); }

/* reworkRate Access Methods */
Equation * reworkRate()
{ return ROSE_GET_OBJ (Equation,PERSISTENT _reworkRate); }
void reworkRate (Equation * areworkRate)
{ ROSE_PUT_OBIJ(Equation,PERSISTENT _reworkRate,areworkRate); }

/* resources Access Methods */

ListOfResourceUtilization * resources();

void resources (ListOfResourceUtilization * aresources)

{ ROSE_PUT_OB]J (ListOfResourceUtilization, PERSISTENT _resources,aresources); }

/* reworkPercentage Access Methods */

float reworkPercentage()

{ return ROSE_GET_PRIM (float, PERSISTENT _reworkPercentage);
}

void reworkPercentage (float areworkPercentage)
{ ROSE_PUT_PRIM (float, PERSISTENT _reworkPercentage,areworkPercentage); }

/* reworkCost Access Methods */
float reworkCost()

l { return ROSE_GET_PRIM (float, PERSISTENT _reworkCost);

void reworkCost (float areworkCost)
{ ROSE_PUT_PRIM (float, PERSISTENT _reworkCost,areworkCost); }

/* Constructors */

Rework ();

Rework (
Rules * areworkRule,
Equation * areworkRate,
ListOfResourceUtilization * aresources,
float areworkPercentage,
float areworkCost);

/* CLASS DECLARATION EXTENSIONS */
/* Deep Copy Rework Object */
Rework *CopyRework(ListOfRoseObject *);

/* Determine if Rework Rule is Applicable for this part */
BOOL Select(ListOfRoseObject *partFeatures);

I

#endif

5.2.9 Cost Specification

/* Class Declaration */

67

———

UNCLASSIFIED
CDRL No. 0002AC-5

#ifndef Cost_h
#define Cost_h

#include "rose.h"
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Cost.hi"

#define CostOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Cost)

ROSE_DECLARE (Cost) : virtual public RoseStructure {
pnvate:

float PERSISTENT_setupTime;

float PERSISTENT _runTime;

float PERSISTENT _idealTime;

float PERSISTENT _idealCost;

float PERSISTENT _actualTime;

float PERSISTENT _actualCost;

public:
ROSE_DECLARE_MEMBERS(Cost);

/* Access and Update Methods */

/* setupTime Access Methods */

float setupTime()

{ return ROSE_GET_PRIM (float, PERSISTENT _setupTime);
}

void setupTime (float asetupTime)
{ ROSE_PUT_PRIM (float,PERSISTENT _setupTime,asetupTime); }

/¥ runTime Access Methods */
float runTime()
{ return ROSE_GET_PRIM (float, PERSISTENT _runTime);

void runTime (float arunTime)
{ ROSE_PUT_PRIM (float,PERSISTENT _runTime,arunTime); }

/* idealTime Access Methods */
float ideal Time()
{ return ROSE_GET_PRIM (float, PERSISTENT _idealTime);

void idealTime (float aidealTime)
{ ROSE_PUT_PRIM (float, PERSISTENT idealTime,aideal Time); }

/* idealCost Access Methods */

float idealCost()

{ return ROSE_GET_PRIM (float, PERSISTENT _idealCost);
}

void idealCost (float aidealCost)
{ ROSE_PUT_PRIM (float, PERSISTENT _idealCost,aidealCost); }

68

UNCLASSIFIED
CDRL No. 0002AC-5

/¥ actualTime Access Methods */
float actualTime()
{ return ROSE_GET_PRIM (float, PERSISTENT _actual Time);

void actualTime (float aactualTime)
{ ROSE_PUT_PRIM (float, PERSISTENT _actualTime,aactual Time); }

/* actualCost Access Methods */

float actualCost()

{ return ROSE_GET_PRIM (float, PERSISTENT _actualCost);
}

void actualCost (float aactualCost)
{ ROSE_PUT_PRIM (float, PERSISTENT _actualCost,aactualCost); }

/¥ Constructors */

Cost ();

Cost (
float asetupTime,
float arunTime,
float aidealTime,
float aidealCost,
float aactualTime,
float aactualCost);

/* CLASS DECLARATION EXTENSIONS */
Cost *AddCost();

b
#endif

5.2.10 ResourceUtilization Specification

/* Class Declaration */
#ifndef ResourceUtilization_h
#define ResourceUtilization_h

#include "rose.h"
#include "resource_schema_types.h"

/¥ CLASS INCLUDE-FILE EXTENSIONS */
#include "ResourceUtilization.hi"

ROSE_DECLARE (Resource);

ROSE_DECLARE (Equation);

ROSE_DECLARE (ResourceRates);

#define ResourceUtilizationOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ResourceUtilization)

ROSE_DECLARE (ResourceUtilization) : virtual public RoseStructure {
private:

Resource * PERSISTENT _resource;

Equation * PERSISTENT _setupTime;

69

UNCLASSIFIED
CDRL No. 0002AC-5

Equation * PERSISTENT _runTime;
float PERSISTENT _effRate; /* OPTIONAL */
ResourceRates * PERSISTENT _rate;

public:
ROSE_DECLARE_MEMBERS(ResourceUtilization);

/* Access and Update Methods */

/* resource Access Methods */

Resource * resource()

{ return ROSE_GET_OBJ (Resource, PERSISTENT _resource);

}

void resource (Resource * aresource)

{ ROSE_PUT_OBJ (Resource, PERSISTENT _resource,aresource); }

/* setupTime Access Methods */
Equation * setupTime()
{ return ROSE_GET_OBJ (Equation,PERSISTENT _setupTime); }
void setupTime (Equation * asetupTime)
{ ROSE_PUT_OBIJ(Equation,PERSISTENT _setupTime,asetupTime); }

/* runTime Access Methods */
Equation * runTime()
{ return ROSE_GET_OBJ (Equation,PERSISTENT _runTime); }
void runTime (Equation * arunTime)
{ ROSE_PUT_OBIJ(Equation, PERSISTENT_runTime,arunTime); }

/* effRate Access Methods */
float effRate()
{ return ROSE_GET_PRIM (float, PERSISTENT _effRate);

}
void effRate (float aeffRate)
{ ROSE_PUT_PRIM (float, PERSISTENT _effRate,aeffRate); }

/* rate Access Methods */

ResourceRates * rate()

{ return ROSE_GET_OBJ (ResourceRates, PERSISTENT _rate);
}

void rate (ResourceRates * arate)

{ ROSE_PUT_OBJ (ResourceRates,PERSISTENT _rate,arate); }

/* Constructors */
ResourceUtilization ();
ResourceUtilization (
Resource * aresource,
Equation * asetupTime,
Equation * arunTime,
float aeffRate,
ResourceRates * arate);

/* CLASS DECLARATION EXTENSIONS */

/* Deep Copy the ResourceUtilization Object */
ResourceUtilization * AddResourceUtilization(ListOfRoseObject *);

70

UNCLASSIFIED
CDRL No. 0002AC-5

/* Calculatge Resource Rates */

void CalculateResourceRates(ListOfRoseObject *);
b

#endif

5.2.11 Parameter Specification

/* Class Declaration */
#ifndef Parameter_h
#define Parameter_h

#include "rose.h”
#include "resource_schema_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */

#define ParameterOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Parameter)

ROSE_DECLARE (Parameter) : virtual public RoseStructure {
private:

STR PERSISTENT _p_name;

STR PERSISTENT_p_value;

public:
ROSE_DECLARE_MEMBERS(Parameter);

/* Access and Update Methods */

/* p_name Access Methods */

STR p_name()

{ return ROSE_GET_PRIM (STR,PERSISTENT_p_name);

}

void p_name (STR ap_name)

{ ROSE_PUT_PRIM (STR,PERSISTENT_p_name,ap_name); }

/* p_value Access Methods */
STR p_value()
{ return ROSE_GET_PRIM (STR,PERSISTENT _p_value);

}
void p_value (STR ap_value)
{ ROSE_PUT_PRIM (STR,PERSISTENT_p_value,ap_value); }

/* Constructors */
Parameter ();
Parameter (
STR ap_name,
STR ap_value);
/* CLASS DECLARATION EXTENSIONS */

b
#endif

71

UNCLASSIFIED
CDRL No. 0002AC-5

5.2.12 ResourceRates Specification

/* Class Declaration */
#ifndef ResourceRates_h
#define ResourceRates_h

#include "rose.h"”
#include "resource_schema_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ResourceRates.hi"

#define ResourceRatesOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ResourceRates)

ROSE_DECLARE (ResourceRates) : virtual public RoseStructure {
private:

float PERSISTENT _setupTime;

float PERSISTENT _runTime;

float PERSISTENT _idealTime;

float PERSISTENT _idealCost;

public:
ROSE_DECLARE_MEMBERS(ResourceRates);

/* Access and Update Methods */

/* setupTime Access Methods */

float setupTime()

{ return ROSE_GET_PRIM (float, PERSISTENT _setupTime);
}

void setupTime (float asetupTime)

{ ROSE_PUT_PRIM (float,PERSISTENT _setupTime,asetupTime); }

/* runTime Access Methods */

float runTime()

{ return ROSE_GET_PRIM (float, PERSISTENT _runTime);
}

void runTime (float arunTime)
{ ROSE_PUT_PRIM (float, PERSISTENT _runTime,arunTime); }

/* idealTime Access Methods */
float ideal Time()
{ return ROSE_GET_PRIM (float, PERSISTENT _idealTime);

void idealTime (float aidealTime)
{ ROSE_PUT_PRIM (float, PERSISTENT _idealTime,aideal Time); }

/* idealCost Access Methods */

float ideal Cost()

{ return ROSE_GET_PRIM (float, PERSISTENT _idealCost);
}

72

UNCLASSIFIED
CDRL No. 0002AC-5

void idealCost (float aidealCost)
{ ROSE_PUT_PRIM (float, PERSISTENT _idealCost,aidealCost); }

/* Constructors */
ResourceRates ();
ResourceRates (
float asetupTime,
float arunTime,
float aidealTime,
float aidealCost);

/* CLASS DECLARATION EXTENSIONS ¥/
ResourceRates ¥*AddRates();

b

#endif

5.2.13 Resource Specification

/* Class Declaration */
#ifndef Resource_h
#define Resource_h

#include "rose.h”
#include "resource_schema_types.h"

/¥ CLASS INCLUDE-FILE EXTENSIONS */
#include "Resource.hi"

ROSE_DECLARE (ListOfParameter);

#define ResourceOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Resource)

ROSE_DECLARE (Resource) : virtual public RoseStructure {
private:

STR PERSISTENT _resource_name;

STR PERSISTENT resource_code;

ListOfParameter * PERSISTENT _parameters;

public:
ROSE_DECLARE_MEMBERS(Resource);

/* Access and Update Methods */

/* resource_name Access Methods */

STR resource_name()

{ return ROSE_GET_PRIM (STR,PERSISTENT _resource_name);

}

void resource_name (STR arescurce_name)

{ ROSE_PUT_PRIM (STR,PERSISTENT _resource_name,aresource_name); }

/* resource_code Access Methods */
STR resource_code()

73

UNCLASSIF
CDRL No. (j02A

{ return ROSE_GET_PRIM (STR,PERSISTENT _resource_code);

}

void resource_code (STR aresource_code)

{ ROSE_PUT_PRIM (STR,PERSISTENT _resource_code,aresource_code); }

/* parw.neters Access Methods */

ListOfParameter * parameters();

void parameters (ListOfParameter * aparameters)

{ ROSE_PUT_OBJ (ListOfParameter, PERSISTENT_parameters,aparameters); }

/* Constructors */

Resource ();

Resource (
STR aresource_name,
STR aresource_code,
ListOfPaiameter * aparameters);

/* CLASS DECLARATION EXTENSIONS ¥/
/* retrieve the resource rate */

virtual float getRate();

}:
#endif

5.2.13.1 Equipment Specification

/* Class Declaration */
#ifndef Equipment_h
#define Equipment_h

#include "rose.h"
#include "resource_schema_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Equipment.hi”

#include "Resource.h”

#define EquipmentOffsets(subClass)\
ResourceOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Equipment)

ROSE_DECLARE (Equipment) : virtual public Resource {
private:

STR PERSISTENT _equipmentCategory:

float PERSISTENT _cost_per_time_unit:

public:
ROSE_DECLARE_MEMBERS(Equipment);

/* Access and Update Methods */
/* equipmentCategory Access Methods */

STR equipmentCategory()
{ return ROSE_GET_PRIM (STR.PERSISTENT _equipmentCategory).

74

UNCLASSIFII
CDRL No. 0002AC

}
void equipmentCategory (STR aequipmentCategory)

{ ROSE_PUT_PRIM (STR,PERSISTENT _equipmentCategory,aequipmentCategory);

/* cost_per_time_unit Access Methods */

float cost_per_time_unit()

{ return ROSE_GET _PRIM (float, PERSISTENT _cost_per_time_unit):

}

void cost_per_time_unit (float acost_per_time_unit)

{ ROSE_PUT_PRIM (float, PERSISTENT _cost_per_time_unit,acost_per_time_unit);

/* Constructors */

Equipment ();

Equipment (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
STR aequipmentCategory,
float acost_per_time_unit);

/* CLASS DECLARATION EXTENSIONS */
float getRate();

1
#endif
5.2.13.2 ConsumableMaterial Specification

/* Class Declaration */
#ifndef ConsumableMaterial_h
#define ConsumableMaterial_h

#include "rose.h"
#include “resource_schema_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ConsumableMaterial.hi"

#include "Resource.h”

ROSE_DECLARE (ListOfResourceConsumable);

#define ConsumableMaterialOffsets(subClauss) \
ResourceOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ConsumabicMaterial)

ROSE_DECLARE (ConsumableMaterial) : virtual public Resource {
private:
float PERSISTENT _cost_per_unit;
ListOfResourceConsumable * PERSISTENT _resourceRates;

public:
ROSE_DECLARE_MEMBERS(ConsumableMaterial);

/* Access and Update Methods */

75

UNCLASSIFIE
CDRL No. 0002AC-

/* cost_per_unit Access Methods */

float cost_per_unit()

{ return ROSE_GET_PRIM (float, PERSISTENT _cost _per_unit);

}

void cost_per_unit (float acost_per_unit)

{ ROSE_PUT_PRIM (float, PERSISTENT _cost_per_unit,acost_per_unit); }

/* resourceRates Access Methods */

ListOfResourceConsumable * resourceRates();

void resourceRates (ListOfResourceConsumable * aresourceRates)

{ ROSE_PUT_OBJ
(ListOfResourceConsumable, PERSISTENT _resourceRates,aresourceRates); }

/* Constructors */
ConsumableMaterial ();
ConsumableMaterial (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
float acost_per unit,
ListOfResourceConsumable * aresourceRates);

/¥ CLASS DECLARATION EXTENSIONS ¥/
float getRate();

k4

#endif

5.2.13.3 ResourceConsumable Specification

/* Class Declaration */
#ifndef ResourceConsumable_h
#define ResourceConsumable_h

#include "rose.h"
#include "resource_schema_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ResourceConsumable.hi”

ROSE_DECLARE (Resource);

#define ResourceConsumableOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ResourceConsumable)

ROSE_DECLARE (ResourceConsumable) : virtual public RoseStructure {
private:

Resource * PERSISTENT _aresource;

float PERSISTENT _units_exhausted_per_time_unit;

public:
ROSE_DECLARE_MEMBERS(ResourceConsumabile);

/* Access and Update Methods */

76

UNCLASSIFIEC
CDRL No. 0002AC-¢

/* aresource Access Methods */

Resource * aresource()

{ return ROSE_GET_OBJ (Resource, PERSISTENT _aresource);

}

void aresource (Resource * aaresource)

{ ROSE_PUT_OBJ (Resource,PERSISTENT _aresource,aaresource); }

/* units_exhausted_per_time_unit Access Methods */

float units_exhausted_per_time_unit()

{ return ROSE_GET_PRIM (float, PERSISTENT _units_exhausted_per_time_unit);
}

void units_exhausted_per_time_unit (float aunits_exhausted_per_time_unit)

{ ROSE_PUT_PRIM

(float, PERSISTENT _units_exhausted_per_time_unit,aunits_exhausted_per_time_unit); }

/* Constructors */
ResourceConsumable ();
ResourceConsumable (

Resource ¥ aaresource,

float aunits_exhausted_per_time_unit);

/* CLASS DECLARATION EXTENSIONS #*/
float getUnitsConsumed();

Ik
#endif
5.2.13.4 Labor Specification

/* Class Declaration */
#ifndef Labor_h
#define Labor_h

#include "rose.h"
#include "resource_schema_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Labor.hi"

#include "Resource.h”

#define LaborOffsets(subClass) \
ResourceOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Labor)

ROSE_DECLARE (Labor) : virtual public Resource {
private:

STR PERSISTENT_job_code;

LaborClass PERSISTENT_I_type:

float PERSISTENT _rate;

public:
ROSE_DECLARE_MEMBERS(Labor);

77

UNCLASSIFIED
CDRL No. 0002AC-S§

/* Access and Update Methods */

/* job_code Access Methods */
STR job_code()
{ return ROSE_GET_PRIM (STR,PERSISTENT_job_code);

}
void job_code (STR ajob_code)
{ ROSE_PUT_PRIM (STR,PERSISTENT_job_code,ajob_code); }

/* 1_type Access Methods */
LaborClass 1_type()
{ return ROSE_GET_PRIM (LaborClass,PERSISTENT_1_type);

}
void 1_type (LaborClass al_type)
{ ROSE_PUT_PRIM (LaborClass,PERSISTENT_I_type,al_type); }

/* rate Access Methods */
float rate()
{ return ROSE_GET_PRIM (float, PERSISTENT _rate);

void rate (float arate)
{ ROSE_PUT_PRIM (float, PERSISTENT _rate,arate); }

/* Constructors */

Labor ();

Labor (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
STR ajob_code,
LaborClass al_type,
float arate);

/* CLASS DECLARATION EXTENSIONS ¥/
float getRate();
}.

#endif

5.2.13.5 Facility Specification
/* Class Declaration */

#ifndef Facility_h

#define Facility_h

#include “rose.h"
#include "resource_schema_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Facility.hi"

#include "Resource.h”

#define FacilityOffsets(subClass) \
ResourceOffsets(subClass) \

78

UNCLASSIFIED
CDRL No. 0002AC-5

ROSE_SUPERCLASS_OFFSET(subClass,Facility)

ROSE_DECLARE (Facility) : virtual public Resource {
private:

float PERSISTENT_square_feet_allocated;

float PERSISTENT _cost_per_sq_ft_per_time_unit;

public:
ROSE_DECLARE_MEMBERS(Facility);

/* Access and Update Methods */

/* square_feet_allocated Access Methods */
float square_feet_allocated()
{ return ROSE_GET_PRIM (float, PERSISTENT_square_feet_allocated);

void square_feet_allocated (float asquare_feet_allocated)
{ ROSE_PUT_PRIM
(float, PERSISTENT _square_feet_allocated,asquare_feet_allocated); }

/* cost_per_sq_ft_per_time_unit Access Methods */

float cost_per_sq_ft_per_time_unit()

{ return ROSE_GET_PRIM (float, PERSISTENT _cost_per_sq_ft_per_time_unit);

}

void cost_per_sq_ft_per_time_unit (float acost_per_sq_ft_per_time_unit)
ROSE_PUT_PRIM

(float, PERSISTENT _cost_per_sq_ft_per_time_unit,acost_per_sq_ft_per_time_unit); }

/* Constructors */
Facility ();
Facility (
STR aresource_name,
STR aresource_code,
ListOfParameter * aparameters,
float asquare_feet_allocated,
float acost_per_sq_ft_per_time_unit);

/* CLASS DECLARATION EXTENSIONS */
float getRate();

}7

#endif

5.2.14 Reasoninglogic Specification
/* Class Declaration */

#ifndef ReasoningLogic_h

#define ReasoningLogic_h

#include "rose.h"
#include "process_model_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ReasoninglLogic.hi"”

79

UNCLASSIFIED
CDRL No. 0002AC-5

ROSE_DECLARE (ListOfRules);

#define ReasoningLogicOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ReasoninglLogic)

ROSE_DECLARE (ReasoningLogic) : virtual public RoseStructure {
private:
ListOfRules * PERSISTENT _rules;

public:
ROSE_DECLARE_MEMBERS(ReasoningLogic);

/* Access and Update Methods */

/* rules Access Methods */

ListOfRules * rules();

void rules (ListOfRules * arules)

{ ROSE_PUT_OBJ (ListOfRules,PERSISTENT _rules,arules); }

/* Constructors */
ReasoningLogic ();
ReasoningLogic (

ListOfRules * arules);

/* CLASS DECLARATION EXTENSIONS */
/* Evaluate ReasoningLogic */
BOOL Evaluate(ProductEntities *);

/* Display ReasoningLogic Data */
void Display();

};

#endif

5.2.15 Rules Specification

/* Class Declaration */
#ifndef Rules_h
#define Rules_h

#include "rose.h”
#include “selection_rules_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Rules.hi”

ROSE_DECLARE (ListOfExpression);

#define RulesOftsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Rules)

ROSE_DECLARE (Rules) : virtual public RoseStructure {
private:

80

UNCLASSIFIED
CDRL No. 0002AC-5

ListOfExpression * PERSISTENT _expl;
BOOL PERSISTENT_moreRuleFiring;

public:
ROSE_DECLARE_MEMBERS(Rules);

/* Access and Update Methods */

/* expl Access Methods */

ListOfExpression * exp1();

void exp1 (ListOfExpression * aexpl)

{ ROSE_PUT_OBJ (ListOfExpression,PERSISTENT _exp1l,aexpl); }

/* moreRuleFiring Access Methods */

BOOL moreRuleFiring()

{ return ROSE_GET_PRIM (BOOL,PERSISTENT_moreRuleFiring);

}

void moreRuleFiring (BOOL amoreRuleFiring)

{ ROSE_PUT_PRIM (BOOL,PERSISTENT_moreRuleFiring,amoreRuleFiring); }

/* Constructors */

Rules ();

Rules (
ListOfExpression * aexpl,
BOOL amoreRuleFiring);

/* CLASS DECLARATION EXTENSIONS #/
/* Evaluate Rules */
BOOL Evaluate(ProductEntities *, ListOfRoseObject *);

/* Display Rules */
void Display();
} .

#endif
5.2.16 Expression Specification

/* Class Declaration */
#ifndef Expression_h
#define Expression_h

/* Class Expression */

#include "rose.h"”

#include "selection_rules_types.h”
ROSE_DECLARE (Equation);
ROSE_DECLARE (ComplexExp);
ROSE_DECLARE (SimpleExp);
ROSE_DECLARE (StringValue);

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Expression.hi"

81

UNCLASSIFIED
CDRL No. 0002AC-5

#define ExpressionOffsets(subClass) \
RoseUnionOffsets{(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Expression)

ROSE_DECLARE (Expression) : public RoseUnion {
public:

ROSE_DECLARE_MEMBERS (Expression);

/* Access and Update Methods */

BOOL is_Equation()

{ return (getAttribute() == getAttribute("_Equation"));

}

Equation * _Equation()

{ return ROSE_GET_OBJ (Equation,PERSISTENT _data.value.aPtr); }

void _Equation (Equation * a_Equation)
this->putAttribute("_Equation");
if ({ROSE.error())
ROSE_PUT_OBIJ(Equation,PERSISTENT_data.value.aPtr,a_Equation); }

BOOL is_ComplexExp()

{ return (getAttribute() == getAttribute("_ComplexExp"));

}

ComplexExp * _ComplexExp()

{ return ROSE_GET_OBJ (ComplexExp,PERSISTENT _data.value.aPtr); }

void _ComplexExp (ComplexExp * a_ComplexExp)
{ this->putAttribute("_ComplexExp");
if (\ROSE .error())

ROSE_PUT_OBJ(ComplexExp,PERSISTENT _data.value.aPtr,a_ComplexExp); }

BOOL is_SimpleExp()
{ return (getAttribute() == getAttribute("_SimpleExp"));

}
SimpleExp * _SimpleExp()
{ return ROSE_GET_OBJ (SimpleExp,PERSISTENT _data.value.aPtr); }

void _SimpleExp (SimpleExp * a_SimpleExp)
{ this->putAttribute("_SimpleExp");
if 'ROSE.error())
ROSE_PUT_OBIJ(SimpleExp,PERSISTENT _data.value.aPtr,a_SimpleExp); }

BOOL is_StringValue()
{ return (getAttribute() == getAttribute("_StringValue"));

StringValue * _StringValue()
{ return ROSE_GET_OBJ (StringValue, PERSISTENT _data.value.aPtr); }

void _StringValue (StringValue * a_StringValue)

{ this->putAttribute("_String Value"),
if "ROSE .error())

82

UNCLASSIFIED

CDRL No. 0002AC-5

ROSE_PUT_OBIJ(StringValue, PERSISTENT _data.value.aPtr,a_StringValue);

}

/* Constructor */

Expression ();

/* CLASS DECLARATION EXTENSIONS #/
/* Evaluate Expression */

TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);

/* Display Expression */
void Display();
} .

#endif
5.2.17 ComplexExp Specification

/* Class Declaration */
#ifndef ComplexExp_h
#define ComplexExp_h

#include "rose.h"
#include "selection_rules_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ComplexExp.hi"

ROSE_DECLARE (Equation);

ROSE_DECLARE (Expression);

#define ComplexExpOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ComplexExp)

ROSE_DECLARE (ComplexExp) : virtual public RoseStructure {
private:

Equation * PERSISTENT_Equl;

Equiv_Op PERSISTENT_EquivOpl;

Expression * PERSISTENT_Expl;

public:
ROSE_DECLARE_MEMBERS(ComplexExp);

/* Access and Update Methods */

/* Equl Access Methods */
Equation * Equl()
{ return ROSE_GET_OBJ (Equation,PERSISTENT_Equl); }
void Equl (Equation * aEqul)
{ ROSE_PUT_OBIJ(Equation, PERSISTENT_Equl,aEqul); }

/* EquivOp1 Access Methods */
Equiv_Op EquivOp1()

83

UNCLASSIFIED
CDRL No. 0002AC-5

{ return ROSE_GET_PRIM (Equiv_Op,PERSISTENT_EquivOp1);

}
void EquivOp1 (Equiv_Op aEquivOpl)
{ ROSE_PUT_PRIM (Equiv_Op,PERSISTENT_EquivOpl,aEquivOpl); }

/* Expl Access Methods */
Expression * Exp1()
{ return ROSE_GET_OBJ (Expression, PERSISTENT _Expl); }
void Exp1 (Expression * aExp1)
{ ROSE_PUT_OBIJ(Expression,PERSISTENT _Expl,aExpl); }

/* Constructors */
ComplexExp ();
ComplexExp (

Equation * aEqul,

Equiv_Op aEquivOpl,
Expression * aExpl);

/* CLASS DECLARATION EXTENSIONS ¥*/

TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);
void Display();

} .

#endif
5.2.18 SimpleExp Specification

/* Class Declaration */
#ifndef SimpleExp_h
#define SimpleExp_h

#include "rose.h"
#include "selection_rules_types.h”

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "SimpleExp.hi"

ROSE_DECLARE (DataDictStr);

#define SimpleExpOffsets(subClass) \
RaoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,SimpleExp)

ROSE_DECLARE (SimpleExp) : virtual public RoseStructure {
private:

Unary_Op PERSISTENT_Notl;

DataDictStr * PERSISTENT_DataDictVar;

public:
ROSE_DECLARE_MEMBERS(SimpleExp);

/* Access and Update Methods */

/* Notl Access Methods */
Unary_Op Notl()

84

UNCLASSIFIED
CDRL No. 0002AC-5

{ return ROSE_GET_PRIM (Unary_Op,PERSISTENT _Notl);

}
void Notl (Unary_Op aNotl)
{ ROSE_PUT_PRIM (Unary_Op,PERSISTENT_Notl,aNotl); }

/* DataDictVar Access Methods */
DataDictStr * DataDictVar()
{ return ROSE_GET_OBJ (DataDictStr,PERSISTENT _DataDictVar);

}
void DataDictVar (DataDictStr * aDataDictVar)
{ ROSE_PUT_OB]J (DataDictStr,PERSISTENT_DataDictVar,aDataDictVar); }

/* Constructors */

SimpleExp ();

SimpleExp (
Unary_Op aNotl,
DataDictStr * aDataDictVar);

/* CLASS DECLARATION EXTENSIONS */

TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);
void Display();

} .

#endif
5.2.19 Equation Specification

/* Class Declaration */
#ifndef Equation_h
#define Equation_h

/* Class Equation */

#include "rose.h”

#include "selection_rules_types.h"
ROSE_DECLARE (Term);
ROSE_DECLARE (ComplexEquation);

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Equation.hi"

#define EquationOffsets(subClass) \
RoseUnionOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Equation)

ROSE_DECLARE (Equation) : public RoseUnion {
public:

ROSE_DECLARE_MEMBERS(Equation);
/* Access and Update Methods */

BOOL is_Term()
{ return (getAttribute() == getAttribute("_Term"));

85

UNCLASSIFIED
CDRL No. 0002AC-5

Term * _Term()
{ return ROSE_GET_OBJ (Term,PERSISTENT _data.value.aPtr); }

void _Term (Term * a_Term)
{ this->putAttribute("_Term");
if ('ROSE.error())
ROSE_PUT_OBJ(Term,PERSISTENT _data.value.aPtr,a_Term); }

BOOL is_ComplexEquation()

{ return (getAttribute() == getAttribute("_ComplexEquation"));
}

ComplexEquation * _ComplexEquation()

{ return ROSE_GET_OBJ (ComplexEquation, PERSISTENT _data.value.aPtr); }

void _ComplexEquation (ComplexEquation * a_ComplexEquation)
{ this->putAttribute("_ComplexEquation");
if ('ROSE.error())

ROSE_PUT_OBJ(ComplexEquation,PERSISTENT _data.value.aPtr,a. ComplexEquati
on); }

/* Constructor */
Equation ();

/* CLASS DECLARATION EXTENSIONS ¥/
TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);
void Display();

}’
#endif
5.2.20 ComplexTerm Specification

/* Class Declaration */
#ifndef ComplexTerm_h
#define ComplexTerm_h

#include "rose.h"”
#include "selection_rules_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ComplexTerm.hi"

ROSE_DECLARE (Equation);

#define Complex TermOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ComplexTerm)

ROSE_DECLARE (ComplexTerm) : virtual public RoseStructure {
private:

Equation * PERSISTENT _equl;

Mult_Div_Oper PERSISTENT_Operl;

Equation * PERSISTENT _equ2,;

86

UNCLASSIFIED
CDRL No. 0002AC-5

public:
ROSE_DECLARE_MEMBERS(ComplexTerm);

/* Access and Update Methods */

/* equl Access Methods */
Equation * equl()
{ return ROSE_GET_OBJ (Equation,PERSISTENT _equl); }
void equl (Equation * aequl)
{ ROSE_PUT_OBJ(Equation, PERSISTENT _equl,aequl); }

/* Operl Access Methods */
Mult_Div_Oper Operl()
{ return ROSE_GET_PRIM (Mult_Div_Oper,PERSISTENT _Operl);

}
void Oper] (Mult_Div_Oper aOperl)
{ ROSE_PUT_PRIM (Mult_Div_Oper,PERSISTENT_Op. ,aOperl); }

/* equ2 Access Methods */
Equation * equ2()
{ return ROSE_GET_OB]J (Equation,PEKSISTENT_equ2); }
void equ2 (Equation * aequ2)
{ ROSE_PUT_OBJ(Equation,PERSISTENT_equ2,aequ2); }

/* Constructors */
ComplexTerm ();
ComplexTerm (
Equation * aequl,
Mult_Div_Oper aOperl,
Equation * aequ2);

/* CLASS DECLARATION EXTENSIONS ¥/

TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);
void Display();

}.

Hendif
5.2.21 ComplexEquation Specification

/* Class Declaration */
#ifndef ComplexEquation_h
#define ComplexEquation_h

#include "rose.h”
#include "selection_rules_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ComplexEquation.hi"

ROSE_DECLARE (Term);,

ROSE_DECLARE (Equation);
#define ComplexEquationOffsets(subClass) \

87

oy am T e

- 2N Iy Ey R B) . e

UNCLASSIFIED
CDRL No. V002AC-5

RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ComplexEquation)

ROSE_DECLARE (ComplexEquation) : virtual public RoseStructure {
private:

Term * PERSISTENT_Varl;

Add_Sub_Oper PERSISTENT_Operl;

Equation * PERSISTENT _Value;

public:
ROSE_DECLARE_MEMBERS(ComplexEquation);

/* Access and Update Methods */

/* Varl Access Methods */
Term * Varl()
{ return ROSE_GET_OBJ (Term,PERSISTENT_Varl); }
void Varl (Term * aVarl)
{ ROSE_PUT_OBIJ(Term,PERSISTENT _Varl,aVarl); }

/* Operl Access Methods */

Add_Sub_Oper Oper1()
{ return ROSE_GET_PRIM (Add_Sub_Oper,PERSISTENT_Operl);

}
void Oper1 (Add_Sub_Oper aOperl)
{ ROSE_PUT_PRIM (Add_Sub_Oper,PERSISTENT_Operl,aOperl); }

/* Value Access Methods */
Equation * Value()
{ return ROSE_GET_OBJ (Equation,PERSISTENT_Value); }
void Value (Equation * aValue)
{ ROSE_PUT_OBJ(Equation,PERSISTENT _Value,aValue); }

/* Constructors */
ComplexEquation ();
ComplexEquation (
Term * aVarl,
Add_Sub_Oper aOperl,
Equation * aValue);

/* CLASS DECLARATION EXTENSIONS */

TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);
void Display();

b

#endif

5.2.22 ParenEquation Specification

/* Class Declaration */

#ifndef ParenEquation_h

#define ParenEquation_h

#include "rose.h"

88

UNCLASSIFIED
CDRL No. 0002AC-5

#include "selection_rules_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "ParenEquation.hi"

ROSE_DECLARE (Equation);

#define ParenEquationOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,ParenEquation)

ROSE_DECLARE (ParenEquation) : virtual public RoseStructure {
private:

LParen PERSISTENT _Lparenthesis;

Equation * PERSISTENT_Equ;

RParen PERSISTENT_Rparenthesis;

public:
ROSE_DECLARE_MEMBERS (ParenEquation);

/* Access and Update Methods */

/* Lparenthesis Access Methods */

LParen Lparenthesis()

{ return ROSE_GET_PRIM (LParen, PERSISTENT_Lparenthesis);

}

void Lparenthesis (LParen aLparenthesis)

{ ROSE_PUT_PRIM (LParen,PERSISTENT_Lparenthesis,aLparenthesis); }

/* Equ Access Methods */
Equation * Equ()
{ return ROSE_GET_OBJ (Equation,PERSISTENT_Equ); }
void Equ (Equation * aEqu)
{ ROSE_PUT_OBIJ(Equation,PERSISTENT_Equ,aEqu); }

/* Rparenthesis Access Methods */
RParen Rparenthesis()
{ return ROSE_GET_PRIM (RParen,PERSISTENT_Rparenthesis);

void Rparenthesis (RParen aRparenthesis)
{ ROSE_PUT_PRIM (RParen,PERSISTENT_Rparenthesis,aRparenthesis); }

/* Constructors */
ParenEquation ();
ParenEquation (

LParen aLparenthesis,

Equation * aEqu,

RParen aRparenthesis);
/* CLASS DECLARATION EXTENSIONS */
TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);
void Display();
} .

#endif

89

| Sy WS A AR) By oD Gy G @ B M wy ek S e Wy as

UNCLASSIFIED
CDRL No. 0002AC-5

5.2.23 Term Specification

/* Class Declaration */
#ifndef Term_h
#define Term_h

/* Class Term */

#include "rose.h”

#include "selection_rules_types.h"
ROSE_DECLARE (Const);
ROSE_DECLARE (DataDictStr);
ROSE_DECLARE (ParenEquation);
ROSE_DECLARE (ComplexTerm);

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Term.hi"

#define TermOffsets(subClass) \
RoseUnionOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Term)

ROSE_DECLARE (Term) : public RoseUnion {
public:

ROSE_DECLARE_MEMBERS(Term);

/* Access and Update Methods */
BOOL is_Const()
{ return (getAttribute() == getAttribute("_Const"));

Const * _Const()
{ return ROSE_GET_OBJ (Const,PERSISTENT_data.value.aPtr); }

void _Const (Const * a_Const)
{ this->putAttribute("_Const");
if ('ROSE.error())
ROSE_PUT_OBIJ(Const,PERSISTENT _data.value.aPtr,a_Const); }

BOOL is_DataDictStr()

{ return (getAttribute() == getAttribute("_DataDictStr"));
}
DataDictStr * _DataDictStr()

{ return ROSE_GET_OBJ (DataDictStr,PERSISTENT_data.value.aPtr); }

void _DataDictStr (DataDictStr * a_DataDictStr)
{ this->putAttribute("_DataDictStr");
if ('ROSE.error())
ROSE_PUT_OBJ(DataDictStr, PERSISTENT _data.value.aPtr,a_DataDictStr);
}

BOGL is_ParenEquation()
{ return (getAttribute() == getAttribute("_ParenEquation™));

90

UNCLASSIFIED
CDRL No. 0002AC-5

}

ParenEquation * _ParenEquation()
{ return ROSE_GET_OBJ (ParenEquation, PERSISTENT _data.value.aPtr); }

void _ParenEquation (ParenEquation * a_ParenEquation)
{ this->putAttribute("_ParenEquation");
if ('ROSE.error())

ROSE_PUT_OBJ(ParenEquation, PERSISTENT_data.value.aPtr,a_ParenEquation); }

BOOL is_ComplexTerm()
{ return (getAttribute() == getAttribute("_ComplexTerm"));

ComplexTerm * _ComplexTerm()
{ return ROSE_GET_OBJ (ComplexTerm,PERSISTENT _data.value.aPtr); }

void _ComplexTerm (ComplexTerm * a_ComplexTerm)
{ this->putAttribute("_ComplexTerm");
if (\ROSE.error())

ROSE_PUT_OBJ(ComplexTerm,PERSISTENT _data.value.aPtr,a_ComplexTerm); }
/* Constructor */
Term ();

/* CLASS DECLARATION EXTENSIONS */

TokenReturnValue Evaluate(BOOL &, ProductEntities *, ListOfRoseObject *);
void Display();

}.

#endif
5.2.24 Const Specification

/* Class Declaration */
#ifndef Const_h
#define Const_h

/* Class Const */
#include "rose.h"
#include "selection_rules_types.h"

/* CLASS INCLUDE-FILE EXTENSIONS */
#include "Const.hi"

#define ConstOffsets(subClass) \
RoseUnionOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Const)

ROSE_DECLARE (Const) : public RoseUnion |
public:

91

- TR G S O an G BN AR A I AR U & Ey an

UNCLASSIFIED
CDRL No. 0002AC-5

ROSE_DECLARE_MEMBERS(Const),

/* Access and Update Methods */
BOOL is_float()
{ return (getAttribute() == getAttribute("_float™));

}
float _float()
{ return (float) ROSE_GET_PRIM (float, PERSISTENT_data.value.aFloat); }

void _float (float a_float)
{ this->putAttribute("_float");
if ('ROSE.error())
ROSE_PUT_PRIM(float, PERSISTENT _data.value.aFloat,a_float); }

BOOL is_int()

{ return (getAttribute() == getAttribute("_int"));

}

int _int()

{ return (int) ROSE_GET_PRIM (int,PERSISTENT _data.value.anlnt); }

void _int (int a_int)
{ this->putAttribute("_int");
if ('ROSE.error())
ROSE_PUT_PRIM(int, PERSISTENT _data.value.anlnt,a_int); }

/* Constructor */
Const ();

/* CLASS DECLARATION EXTENSIONS */
TokenReturnValue Evaluate();
void Display();

#endif
5.2.25 Addition/Subtraction Specification

/* Enumerated Type */
#ifndef Add_Sub_Oper_h
#define Add_Sub_Oper_h

#include "roseHdefs.h"

enum Add_Sub_Oper {
Add_Sub_Oper_NULL = NULL_ENUM,
Add_Sub_Oper_Add =0,
Add_Sub_Oper_Subtract

K
ROSE_DECLARE_PRIM (Add_Sub_Oper);
#endif

92

s
.

5.2.26 Multiplication/Division Specification

/* Enumerated Type */
#ifndef Mult_Div_Oper_h
#define Mult_Div_Oper_h

#include "roseHdefs.h"

enum Mult_Div_Oper {
Mult_Div_Oper_NULL = NULL_ENUM,
Mult_Div_Oper_Multiply =0,
Mult_Div_Oper_Divide

B

ROSE_DECLARE_PRIM (Mult_Div_Oper);

#endif

5.2.27 Unary_Op Specification

/* Enumerated Type */

enum Unary_Op {
Unary_Op_NULL = NULL_ENUM,
Unary_Op_U_Op=0

.
’

5.2.28 Equiv_Op Specification

/* Enumerated Type */

enum Equiv_Op {
Equiv_Op_NULL = NULL_ENUM,
Equiv_Op_Less =0,
Equiv_Op_LessEqual,
Equiv_Op_Greater,
Equiv_Op_GreaterEqual,
Equiv_Op_Equal,

} Equiv_Op_NotEqual

5.2.29 StringValue Specification

/* Class Declaration */
ROSE_DECLARE (StringValue) : virtual public RoseStructure {
private:

DQuote PERSISTENT_quotel;

STR PERSISTENT _valuel;

DQuote PERSISTENT_quote2;

public:
ROSE_DECLARE_MEMBERS(StringValue);

/* Access and Update Methods */

/* quotel Access Methods */

DQuote quote1()

{ return ROSE_GET_PRIM (DQuote, PERSISTENT _quotel);

93

UNCLASSIFIED
CDRL No. 0002AC-5

UNCLASSIFIED
CDRL No. 0002AC-5

void quote! (DQuote aquotel)
{ ROSE_PUT_PRIM (DQuote,PERSISTENT_quotel,aquotel); }

/* valuel Access Methods */
STR valuel()
{ return ROSE_GET_PRIM (STR,PERSISTENT _valuel);

}
void valuel (STR avaluel)
{ ROSE_PUT_PRIM (STR,PERSISTENT _valuel,avaluel); }

/* quote2 Access Methods */

DQuote quote2()

{ return ROSE_GET_PRIM (DQuote, PERSISTENT_quote2);

}

void quote2 (DQuote aquote2)

{ ROSE_PUT_PRIM (DQuote,PERSISTENT_quote2,aquote2); }

/* Constructors */
StringValue ();
StringValue (
DQuote aquotel,
STR avaluel,
DQuote aquote2);
)

/* Methods Implementation */

StringValue::StringValue () {
PERSISTENT_quotel = (DQuote) NULL_ENUM;
PERSISTENT _valuel = NULL;
PERSISTENT_quote2 = (DQuote) NULL_ENUM;
ROSE_CTOR_EXTENSIONS;

}

StringValue::StringValue (
DQuote aquotel,
STR avaluel,
DQuote aquote2)

quotel (aquotel);

valuel (avaluel);

quote2 (aquote2);

ROSE_CTOR_EXTENSIONS:
}

5.2.30 DataDictStr Specification

/* Abstract Base Class Declaration */

ROSE_DECLARE (DataDictStr) : virtual public RoseStructure {
private:

public:
ROSE_DECLARE_MEMBERS(DataDictStr);

94

UNCLASSIFIED
CDRL No. 0002AC-5

/* Access and Update Methods */
/* Constructors */
DataDictStr ();

L3

/* Methods Implementation */
DataDictStr::DataDictStr () {

ROSE_CTOR_EXTENSIONS;
}

/* CLASS EXTENSIONS ¥/
virtual TokenReturnValue Evaluate(BOOL&, ProductEntities *, ListOfRoseObject *);
virtual void Display();

5.2.30.1 EntityName Specification

/* Class Declaration */
ROSE_DECLARE (EntityName) : virtual public DataDictStr {
private:

STR PERSISTENT _name;

public:
ROSE_DECLARE_MEMBERS (EntityName);

/* Access and Update Methods */

/* name Access Methods */

STR name()

{ return ROSE_GET_PRIM (STR,PERSISTENT _name);
}

void name (STR aname)
{ ROSE_PUT_PRIM (STR,PERSISTENT_name,aname); }

/* Constructors */
EntityName ();
EntityName (

STR aname);
B

/* Methods Implementation */
EntityName::EntityName () {
PERSISTENT _name = NULL,;
ROSE_CTOR_EXTENSIONS;
}

EntityName::EntityName (
STR aname)
{

name (aname);
ROSE_CTOR_EXTENSIONS;

}
/* CLASS EXTENSIONS ¥/
virtual TokenReturnValue Evaluate(BOOL&, ProductEntities *, ListOfRoseObject *);

95

p—

’ ,
-'-—qa—---\-n----

UNCLASSIFIED
CDRL No. 0002AC-5

virtual void Display();

5.2.30.2 EntityAttrName Specification

/* Class Declaration */
ROSE_DECLARE (EntityAttrName) : virtual public DataDictStr {
private:

ListOfString * PERSISTENT _entityName;

STR PERSISTENT _attrName;

public:
ROSE_DECLARE_MEMBERS(EntityAttrName);

/* Access and Update Methods */

/* entityName Access Methods */

ListOfString * entityName();

void entityName (ListOfString * aentityName)

{ ROSE_PUT_OBJ (ListOfString, PERSISTENT _entityName,aentityName); }

/* attrName Access Methods */

STR attrName()

{ return ROSE_GET_PRIM (STR,PERSISTENT _attrName);

}

void attrName (STR aattrName)

{ ROSE_PUT_PRIM (STR,PERSISTENT _attrName,aattrName); }

/* Constructors */

EntityAttrName ();

EntityAttrName (
ListOfString * aentityName,
STR aattrName);

b

/* Methods Implementation */

EntityAttrName::EntityAttrName () {
PERSISTENT _entityName = NULL;
PERSISTENT _attrName = NULL;
ROSE_CTOR_EXTENSIONS;

}

EntityAttrName::EntityAttrName (
ListOfString * aentityName,
STR aattrName)

entityName (aentityName);

attrName (aattrName);

RGSE_CTOR_EXTENSIONS;
}

ListOfString * EntityAttrName :: entityName()
{ if('PERSISTENT _entityName)
if(this->isPersistent())
entityName (pnewlIn (design()) ListOfString);

96

- G =y U O Uh B S G ER T En G S By G ay G .

UNCLASSIFIED
CDRL No. 0002AC-5

else entityName (new ListOfString);
return ROSE_GET_OBJ (ListOfString, PERSISTENT _entityName);

}

/* CLASS EXTENSIONS */

virtual TokenReturnValue Evaluate(BOOL&, ProductEntities *, ListOfRoseObject *);
virtual void Display();

5.3 Analyzer

The manufacturing Analyzer is a subsystem of MO which is responsible for performing the
manufacturability analysis on a product database based on the selected process model. The
Analyzer provides the user with the ability to perform a process selection, calculate yield and
rework, and calculate time and cost. The Advisor uses the output of the Analyzer runs which it
then displays to the user. Following is the corresponding specification and methods for the

Analyzer class/object.

/* Class Specification */
#ifndef Analyzer_h
#define Analyzer_h

#include "rose.h”

/* CLASS 1NCLUDE-FILE EXTENSIONS */
#include "Analyzer.hi"

ROSE_DECLARE (ProcessModel);

#define AnalyzerOffsets(subClass) \
RoseStructureOffsets(subClass) \
ROSE_SUPERCLASS_OFFSET(subClass,Analyzer)

ROSE_DECLARE (Analyzer) : virtual public RoseStructure {
private:
STR PERSISTENT _productDesignName;
ProcessModel * PERSISTENT_pModel;
ProcessModel * PERSISTENT _plan;

public:
ROSE_DECLARE_MEMBERS(Analyzer);

/* Access and Update Methods */

/* productDesignName Access Methods */

STR productDesignName()

{ return ROSE_GET_PRIM (STR,PERSISTENT _productDesignName);

}

void productDesignName (STR aproductDesignName)

{ ROSE_PUT_PRIM (STR,PERSISTENT_productDesignName,aproductDesignName);
}

97

UNCLASSIFIED
CDRL No. 0002AC-5

/* pModel Access Methods */
ProcessModel * pModel()
{ return ROSE_GET_OBJ (ProcessModel, FERSISTENT_pModel);

}
void pModel (ProcessModel * apModel)
{ ROSE_PUT_OBJ (ProcessModel, PERSISTENT_pModel,apModel); }

/* plan Access Methods */

ProcessModel * plan()

{ return ROSE_GET_OBJ (ProcessModel, PERSISTENT _plan);
}

void plan (ProcessModel * aplan)
{ ROSE_PUT_OBJ (ProcessModel, PERSISTENT _plan,aplan); }

/* Constructors */

Analyzer ();

Analyzer (
STR aproductDesignName,
ProcessModel * apModel,
ProcessModel * aplan);

/* CLASS DECLARATION EXTENSIONS */
void PerformAnalysis();

};
#endif

5.4 Advisor

The Advisor is responsible for displaying the results produced by each process selected
during an Analyzer run. The user can select analysis runs to view. The user can di:»lay
process, yield, rework, or costing results as graphs, and can also view complete analysis data

to the screen or to file in report format.

The Advisor graphs are implemented using XRT/Graph for Motif widget which displays
data graphically in a window. The graph widget has resources which determine how the graph
will look and behave. We will be writing methods that will take the output results from the
Analyzer subsystem, and display them as pictured in section 4.3 of the Advisor user interface

screens section.

The graph widget has resources which allow programmatic control of the following items:
» graph type (bar, stacked bar, line, and pie).
« header and footer positioning, border style, text, font, and color.
» data styles: line colors and patterns, fill color and patterns, line thickness, point
style, size and color.
» legend positioning, orientation, border style, anchor, font and color.

98

UNCLASSIFIED
CDRL No. 0002AC-5

+ graph positioning, border style, color, width, height, and 3D effect.

+ point and set labels.

+ axis maximum and minimum, numbering increment, tick increment, grid increment,
font, origin, and precision.

+ window background and foreground color.

» text areas.

+ double buffering.

« axis inversion.

» data transposition.

+ marker positioning.

XRT/graph also provides several procedures and methods which allocate and load data
structures containing the numbers to be graphed, output a representation of the graph in
Postscript format, assist the developer in dealing with user-events, and assist the developer

with setting and getting indexed resources.

5.5 Modeler

The process Modeler provides the ability for capturing and modifying manufacturing
process models. The Modeler provides a graphical user interface where the user can capture
process, operation, a.d step activities, as well as, the corresponding selection rules and
resources. The output of the Modeler is a ProcessModel object which is structured as a
hierarchical tree of manufacturing activities. Each activity points to either process, operation, or
step data. The ProcessModel object is used by the Analyzer and the Advisor to select the
manufacturing processes that are used in the cost, yield, and rework calculations. Following is

the corresponding specification and methods for the Modeler class/object.

/* Class Specification */
ROSC_DECLARE (M:.deler) : virtual public RoseStructure {
private:
ProcessModel * PERSISTENT _current_model;
public:
ROSE_DECLARE_MEMBERS(Modeler);

/* Access and Update Methods */
/* current_model Access Methods */
ProcessModel * current_model()

{ return ROSE_GET_OBJ (ProcessModel PERSISTENT _current_model);

}

void current_model (ProcessModel * acurrent_model)

{ ROSE_PUT_OBJ (ProcessModel PERSISTENT_current_model,acurrent_model); }
99

/* Constructors */
Modeler ();
Modeler (

ProcessModel * acurrent_model);
/* CLASS DECLARATION EXTENSIONS */
ProcessModel *readModel();
void writeModel();

*

100

UNCLASSIFIED
CDRL No. 0002AC-5

UNCLASSIFIED
CDRL No. 0002AC-5

6 . Database EXPRESS Schemas

This section defines the schemas of data to be used by MO. Schemas are defined for
process model data, resource data, selection rule and equation data, and PWB product data.
The schemas are defined in the modeling languages EXPRESS and EXPRESS-G.

EXPRESS is an emerging International Standards Organization (ISO) language for the
specification of information models. It was originally developed to enable a formal
specification of the forthcoming ISO 10303 standard, familiarly known as STEP. The language
is also increasingly being used in many other contexts, for example in the mechanical,
electronic and petro-chemical industries, as well as in other national and international standards
efforts. EXPRESS-G is a graphical subset of the EXPRESS language. The graphical nature of

EXPRESS-G makes’ it a valuable tool for understanding and analyzing information models.

6.1 Process Model Schema Specification

In order to perform cost and yield analysis on a design, the manufacturing process must be
modeled. The MO process model supports a hierarchical tree based model of a manufacturing
enterprise. Processes, operations and steps are defined for a manufacturing activity. Rules are
defined which tie the product data to the processes, operations and steps. The selection rules, if

satisfied, will trigger the selection of that process, operation or step.

An object-oriented methodology has been employed to implement the model. To represent
processes, operations, and steps in the tree structure, a generic Manufacturing Activity class
named “MfgSpec” was defined. The MfgSpec objects contain information that is common to
processes, operations, and steps. Within each MfgSpec is a reference to an “info” object. This
info object contains the information specific to the type of manufacturing activity being

modeled (i.e. process, operation, or step).

The Manufacturing Analyzer’s selection methodology is done by traversing the process
model in depth-first fashion. The logic at each manufacturing activity node will be evaluated to
see if this is an applicable path to follow. The selected nodes are added to an analysis tree
which is also modeled as a general purpose tree structure. After the entire process model has
been evaluated and the applicable nodes identified, the analysis tree created during process

selection is traversed in a post-order fashion so that the time and cost can be calculated.

101

UNCLASSIFIED
CDRL No. 0002AC-5

The EXPRESS model specified in this section was created for process model

representation. Figure 6.1-1 is an EXPRESS-G representation of the same model.

6.1.1 EXPRESS Schema for Process Model

This EXPRESS schema listing defines the process model. The process model schema
references the resource_schema, as well as some predefined constants and types. The

specification of the additional schema will follow.

EXPRESS Specification :

*)

INCLUDE 'resource.exp';

SCHEMA process_model;

REFERENCE FROM resource_schema;
CONSTANT

-- Constants to Aid in Part Entity Status Markings
AVAILABLE : INTEGER :=0;

TESTING : INTEGER :=1;

TESTED :INTEGER :=2;

PROCESSED : INTEGER := 3;

COMPLETED : INTEGER :=4;

-- Ordering Constants
SEQUENTIAL : INTEGER := 0;
CONCURRENT : INTEGER := 1;

-- Step Type Constants
SETUP : INTEGER := 0;
RUNTIME : INTEGER :=I;

END_CONSTANT;

TYPE MigSpecOrder = ENUMERATION OF
(SEQUENTIAL, CONCURRENT);
END_TYPE;

TYPE StepTypes = ENUMERATION OF
(SETUP, RUNTIME);
END_TYPE;

TYPE PartEntityStatus = ENUMERATION OF
(AVAILABLE, TESTING, TESTED, PROCESSED, COMPLETED);
END_TYPE;
(*

102

UNCLASSIFIED
CDRL No. 0002AC-5

6.1.1.1 ProcessModel Entity

A ProcessModel entity is the specification of a manufacturing process model that contains a
hierarchical tree structure of Manufacturing Activity entities (i.e. MfgSpec objects). Additional
data about the model is also stored including its name, author, creation date, and last

modification date.

EXPRESS Specification :

ENTITY ProcessModel;
name : STRING; -- Process Model name
creationDate : DateRec; -- Model creation date
modifyDate : DateRec; -- Model last modify date
author : STRING; -- Model author
topProcess : MfgSpec; -- Top MfgSpec in
END_ENTITY; -- hierarchical tree structure

Attribute definitions:
name: Name of the manufacturing process model.
creationDate: The date that the model was created.

modifyDate: The date that the model was last modified.

topProcess: The root or top most process in the process model tree structure.

6.1.1.2 MfgSpec Entity

A MfgSpec entity is the definition of a manufacturing activity which contains
manufacturing process information and its corresponding reasoning logic. If the reasoning
logic is satisfied, then the MfgSpec node is included in the overall analysis results. MfgSpec’s
are organized as a hierarchical planning system. The hierarchical planning system takes the
form of a tree where each node can have one parent and an optional list of ordered (i.e.

sequential or concurrent) children. Each MfgSpec will also have a reference to its right sibling.

EXPRESS Specification :

ENTITY MfgSpec;
id: STRING: -- Unitque MfgSpec Identifier
info: Process; -- Manufacturing Process Information
logic: ReasoningLogic; -- Manufacturing Spec Reasoning Logic
ordering: MfgSpecOrder; -- Sequential or Concurrent Ordering
parent : MfgSpec; -- Parents Spec
children : LIST {0:?] OF MfgSpec; -- List of Children (Descendants)

l author: The author of the model.

UNCLASSIFIED
CDRL No. 0002AC-5
rsibling : MfgSpec; -- Right Sibling
entities : LIST [0:?] OF ROSEOBJECT; -- Spec Produced Entities
specCost: Cost; -- Spec Cost
END_ENTITY;

id: Unique Identifier of the manufacturing specification.

info: Pointer to the Manufacturing Process Information associated with this manufacturing
specification node.

logic: Reasoning Logic associated with the Manufacturing Process information. The logic is
comprised of design feature entity and attributes being present or of specific values.

ordering: Ordering associated with the children of this specification. The order can be
Sequential or Concurrent.

parent: Parent MfgSpec node associated with this specification.
children: List of MfgSpec children associated with this specification.
rsibling: The right sibling associated with this MfgSpec tree node.
entities: List of entities produced by this specification for a particular part under analysis.
specCost: Total Cost of the manufacturing specification.
6.1.1.3 Process Entity
A Process Entity is the definition to support modeling of processes and sub-processes. A
process is an organized sequence of events, either discrete or continuous, that transform raw

materials into a finished product. A sub-process is an organized sequence of events, either

discrete or continuous, that result in a transformation of the product.

EXPRESS Specification ;

*)
ENTITY Process;
name: STRING; -- Process Name
desc: STRING; -- Description
resources: LIST [0:?] OF ResourceUtilization; -- Resources (i.e workcenter/workstation)
qualResults : Quality; -- Process Quality
indivRate : Cost; -- Individual Process time and cost
END_ENTITY;
(*
Atiit lefinitions:

name: Manufacturing Process Name.

104

UNCLASSIFIED
CDRL No. 0002AC-5

desc: Description of the Manufacturing Process.

resources: List of resources used by the process node as an entity. This list of resources are
associated with the process node.

qualResults: The resulting Process Quality associated with this Process.

indivRate: The individual Time and Cost of the Process.
6.1.1.4 Operation Entity

An Operation Entity is the definition to support modeling of operations. An operation is a
logical grouping of work, confined to one workcenter, and often one machine or machining

cell where a discrete unit of work is performed.

EXPRESS Specification :

*)
ENTITY Operation
SUBTYPE OF (Process);
optype: LaborClass; -FALT
scrap_rate : LIST [0:7] OF Scrap; -- Scrap rates
rework_rate : LIST [0:?] OF Rework; -- Rework rates
* END_ENTITY;

Attribute definitions:

optype: Type of Operation (i.e. fabrication, assembly, inspection, or test).

scrap_rate: A list of table entries providing an indexed lookup of scrap rates based on values
of entities and their attributes or an equation that when evaluated will provide the
scrap rate for the operation.

rework_rate: A list of table entries providing an indexed lookup of rework rates based on

“values of entities and their attributes or an equation that when evaluated will provide
the rework rate for the operation.

6.1.1.5 Step Entity

A Step Entity is the definition to support modeling of steps. A step is an element of work

inside an operation, analogous to specific actions.

EXPRESS Specification ;

*)
ENTITY Step
SUBTYPE OF (Process).
stepType: StepTypes; -- Setup or Run Time
END_ENTITY:

105

UNCLASSIFIED
CDRL No. 0002AC-5

(*
Attribute definitions:
stepType: Type of Step (i.e. setup or run time).

6.1.1.6 Scrap Entity

The scrap entity is used to represent scrap rate data (i.e. scrap=1-yield). Scrap is the
percentage of parts that are lost or rejected at this operation. Scrap data is maintained in a list of
scrap entities. In each entity there is a scrap rule and a corresponding scrap rate. If the scrap

rule is satisfied, then the corresponding scrap rate is computed.

EXPRESS Specification :

*)
ENTITY Scrap;
scrapRule : Rules; -- Rule to be evaluated
scrapRate : Equation; -- Scrap that applies if rule is satisfied
scrapPercentage: REAL; -- Actual Calculated operational scrap rate
END_ENTITY;
(*
Attribute definitions:

scrapRule: The scrap rule to be evaluated.
scrapRate: The scrap rate equation to apply if the scrapRule is satisfied.

scrapPercentage: Scrap percentage associated with an operation in a particular part.
6.1.1.7 Rework Entity

The rework entity is used to represent rework rate data. Rework is the percentage of parts
that must be reworked due to this operation. Rework data is maintained in a list of rework
entities. In each entity there is a rework rule and a corresponding rework rate. If the rework
rule is satisfied, then the corresponding rework rate is computed. There is a list of resources

associated with the rework which is used to calculate the cost of performing the rework

operaticn.
EXPRESS Specification ;
*)
ENTITY Rework;
reworkRule : Rules; -- Rule to be evaluated
reworkRate ;: Equation; -- Rework that applies if rule is satisfied

106

UNCLASSIFIED
CDRL No. 0002AC-5
resources : LIST [0:?] OF ResourceUtilization; -- Rework resources
reworkPercentage: REAL; -- Calculated operational rework rate
reworkCost: REAL; -- Calculated Rework Cost
END_ENTITY;

¢+
Auribute definitions:

reworkRule: The rework rule to be evaluated.

reworkRate: The rework rate equation to apply if the reworkRule is satisfied.
resources: The resources associated with the rework.

reworkPercentage: Rework percentage associated with an operation in a particular part.

reworkCost: Rework cost associated with an operation in a particular part.
6.1.1.8 Cost Data

The Cost data types and entities are used to represent calculated analyzer time and cost data.

EXPRESS Specification ;
*
)

ENTITY Cost;
setupTime: REAL; -- Operation Setup Time
runTime: REAL; -- Operation Run Time
idealTime: REAL; -- Calculated Ideal Time
idealCost: REAL; -- Calculated Ideal Cost
actualTime: REAL; -- Calculated Actual Estimated Time
actualCost: REAL; -- Calculated Actual Estimated Cost
END_ENTITY;
(*
Attribute definitions:

setupTime: Operation calculated setup time.
runTime: Operation calculated run time.

IdealFait: Operation Fabrication, Assembly, Inspection, and Test Cost where no scrap and
rework are included.

ActualFait: Actual Estimated Operation Fabrication, Assembly, Inspection, and Test Cost
6.1.1.9 Quality Data

The Quality data types and entities are used to represent calculated scrap, rework, and

production quantity.

107

UNCLASSIFIED
CDRL No. 0002AC-5
EXPRE ification ;
*)
ENTITY Quality;
scrapPercent; REAL; -- Scrap Percentage
prodQty: INTEGER; -- Production QTY
reworkPercent: REAL; -- Rework Percentage
reworkCost: REAL; -- Rework Cost
END_ENTITY;
(*
Attribute definitions:

scrapPercent: Calculated scrap percentage.
prodQty: Required production quantity.
reworkPercent: Calculated rework percentage.

reworkCost: Calculated rework cost.
6.1.1.10 ReasoningLogic Entity

The ReasoningLogic entity is used to hold the selection rules for the manufacturing activity
node. The rules define the reasons behind why a node should or should not be selected as part

of the process to manufacture a part.

EXPRE ification
*)
ENTITY ReasoningLogic;
rules: LIST [0:?] OF Rules; -- List of selection rules
END_ENTITY;
(*
Attribute definitions:

rules: List of manufacturing activity selection rules.

6.1.2 EXPRESS-G Schema for Process Model

The following EXPRESS-G model (figure 6.1-1) represents the Process Model schema:

108

UNCLASSIFIED
CDRL No. 0002AC-5
r - - ----- I
(selection_rules.Rules)
L e — — —_— o =
rules L[0:7]
ReasoningLogid
r
MfgS logic -
kg i 5| ribling
ordeﬁng? A !
b o
—— g MiSeec BT T T T 7 Lentities L[0:7)
parent___| [| children L{0;? RoseObject
| info

desc Process resources L[0:?] r

STRING | H—u]

name
cost lnndlvRate

== — -
Quality REAL
e Cost :
Operation L_INTEGER
= =n | Ste S
LaborClass | | P T n
— — ldoptype rework_rate L[0:7] stepType 1l
scrap_rate L{0:? — -
L{0:?
Scrap Rework resources L10:?)
reworkRate
scrapRule | scrapRate reworkRulé
r— - - - —1
(selection_rules.Equation ’
L e 0 — — [
r — - - --=-- I
—((selection_rules.Rules jo—
b e e o o o — [
reworkCost
(] REAL

scrapPercentage

reworkPercentage

Figure 6.1-1 EXPRESS-G Model of Process Model Schema

6.1.3 EXPRESS Schema for Resource

109

The resource schema defines a collection of entities that are used to specify resources. A

resource is any facility, labor, equipment, or consumable material used in the manufacturing

UNCLASSIFIED
CDRL No. 0002AC-5

process. A consumable material is a material that is used to aid the manufacturing process and

is not considered raw material of the product. As defined in the schema a resource is a generic

entity. Specific subtypes of the resource entity are defined to represent facilities, people,

equipment, and consumable materials. The resource schema includes the selection_rules

schema, as well as some predefined constants and types. The specification of the additional

schema will follow.

EXPRESS Specification :

*)
INCLUDE 'rules.exp";

SCHEMA resource_schema;
REFERENCE FROM selection_rules;
CONSTANT
-- Labor Classification Types
FABRICATION : INTEGER :=0;
ASSEMBLY :INTEGER := I;
INSPECTION : INTEGER :=2;
TEST : INTEGER := 3;
END_CONSTANT;

TYPE LaborClass = ENUMERATION OF

(FABRICATION, ASSEMBLY, INSPECTION, TEST):

END_TYPE;
(*

6.1.3.1 ResourceUtilization Entity

The ResourceUtilization Entity is used to store which resource(s) are utilized by a process

or operation.

EXPRESS Specification ;
%k
)

ENTITY ResourceUtilization;
resource : Resource;
setupTime: Equation;
runTime: Equation;
effRate : OPTIONAL REAL;
rate: ResourceRates;

END_ENTITY;

(*
Attribute definitions:

resource: The resource being utilized.

110

-- Resource utilized

-- Setup Equation

-- RunTime Equation

-- Efficiency Rate

-- Calculated Resource Rates

UNCLASSIFIED
CDRL No. 0002AC-5

setupTime: The amount of setup time required for the resource.
runTime: The amount of time that the resource is being used while running the operation.

effRate: This optional attribute provides an efficiency rate factor that when applied to a labor
standard associated with an operation will provide the actual time for the operation.

rate: Calculated Resource Time and Cost Rates.
6.1.3.2 Resource Entity

This is the generic resource entity. Each resource is named and can be coded of a certain

type. A list of generic attributes can be attached to each resource using the parameter entity.

EXPRESS Specification :
*)

ENTITY Resource;
resource_name : STRING; -- Resource Name
resource_code : STRING; -- Resource Code
parameters : LIST [0:?] of Parameter; -- Resource Parameters

END_ENTITY;

(*

Attribute definitions:

resource_name: The name string associated with the resource.
resource_code: A string used to assign a code to the resource.

parameters: A list of generic attributes that can be attached to this resource.
6.1.3.3 Parameter Entity

The parameter entity is used to define a generic attribute.

EXPRESS Specification :

*)

ENTITY Parameter;
p_name : STRING:; -- Parameter Name
p_value : STRING; -- Parameter Value

END_ENTITY:

(*

Attt lefinitions:

p_name: The name of the parameter.

p_value: The value of the parameter.

111

UNCLASSIFIED
CDRL No. 0002AC-5

6.1.3.4 Labor Entity

The entities in this section define the labor resource. The labor entity is a subtype of the

generic resource entity.

EXPRESS Specification :
*)

ENTITY Labor SUBTYPE OF (Resource);

job_code : STRING; -- Labor Job Code
1_type: LaborClass; -- Labor Type
rate : REAL; -- Labor Rate
END_ENTITY;
(*

Jjob_code : A unique identifier associated with the labor.
1_type: Labor Type (i.e. Fabrication, Assembly, Inspection, Test)

rate : The labor rate.
6.1.3.5 Equipment Entity

The equipment entity is a subtype of the generic resource entity. It is used to specify the

cost of operating the equipment resource during an operation or process.

EXPRESS Specification :
*)

ENTITY Equipment SUBTYPE OF (Resource);

equipment_category : STRING; -- Equipment Category
cost_per_time_unit : REAL; -- Cost Per Time Unit
END_ENTITY:;

(lll
Attribute definitions:
equipment_category: The equipment code or category.

cost_per_time_unit: The cost of operating the equipment resource per unit of time.
6.1.3.6 Facility Entity

The facility entity is a subtype of the generic resource entity. It is used to specify the cost of

using the facility resource during an operation or process.

112

UNCLASSIFIED
CDRL No. 0002AC-5
EXPRE ification ;
*)
ENTITY facility SUBTYPE OF (Resource);
square_feet_allocated : REAL; -- Square Feet Allocated
cost_per_sq_ft_per_time_unit : REAL; -- Cost Per Sq Foot Per Time Unit
END_ENTITY;
(*
Atmbute definitions:

square_feet_allocated: The square feet ullocated to this particular operation or process.

cost_per_sq_ft_per_time_unit: The cost per square foot per time unit.
6.1.3.7 ConsumableMaterial Entity

The consumable material entity is a subtype of the generic resource entity. Consumable
materials are those materials used to aid in the manufacturing of a product that are consumed by
the process. These materials are not considered as part of the raw materials used in the
manufacture of the product. They only aid in the production process and are consumed a. :ome

measurable rate during the process.

EXP i 100 ;
*)
ENTITY ConsumableMaterial SUBTYPE OF (Resource);
cost_per_unit : REAL; -- Cost Per Unit

resourceRates: LIST [0:?] OF ResourceConsumable; -- list of resource rates
END_ENTITY;

ENTITY ResourceConsumable;
aresource : Resource; -- Associated Resource
units_exhausted_per_time_unit : REAL.; -- Units Exhausted Per Hour
END_ENTITY;
(!k
Attribute definitions:
cost_per_unit: The cost of one unit of the consumable material.
resourceRates: The list of resource rates.
aResource: The associated Consumable Resource.

units_exhausted_per_time_unit: Units consumed per unit of time during or by the
operation or process.

UNCLASSIFIED
CDRL No. 0002AC-5

6.1.3.8 ResourceRates Entity

The ResourceRates entity is the entity which holds the calculated time and cost data

associated with the resources.

EXPRESS Specification :
*)

ENTITY ResourceRates;
setupTime: REAL; -- setup Time
runTime: REAL,; --run Time
idealTime: REAL; -- ideal Time
idealCost: REAL; -- ideal Cost

END_ENTITY;

(*

Attribute definitions:

setupTime: Setup Time associated with the Resources.
runTime: Run Time associated with the Resources.
idealTime: Ideal Time associated with the Resources.

idealCost: Ideal Cost associated with the Resources.

6.1.4 EXPRESS-G Schema for Resource

The following EXPRESS-G schema (figure 6.1-2) represents the Resource schema:

114

UNCLASSIFIED
CDRL No. 0002AC-5
_______ |]
L . SprupTime e effRate
(selection_rules.Equation i: ResourceUtilizatiog—————— REAL
| 1t runTime
resource‘L
resource_name
Parameter 0O STRING
paramters L[0:?] Resource —=aq
p_value A(‘)p_name cl) resource_code
STRING
Io—— Labor Facility
job_code
J)rate cost_per_sq ft square_feet
_per_time_unit _allocated
REAL
REAL
cost_per_unitT
Equipment
ConsumableMaterial
cost_per_time_unit !)equipmem_calegory
esourceRates
REAL STRING L{0:7]
resource
? ResourceConsumable {+—

units_exhausted
_per_time_unit

Figure 6.1-2 EXPRESS-G Model of Resources Schema

6.1.5 EXPRESS Schema for Selection Rules

This schema defines a grammar format which rules for selection and equations for
evaluation are specified. Rules are tied to process nodes and equations are tied to such entities
as scrap and rework formulas. Provided below is the complete BNF (Backus-Naur Form)

grammar format for the selection rules and equations which the EXPRESS schema is based on.
Rule Grammar Format

<rule> := <expression>, [<rule>]

<expression> := <equation> | <complexExp> | <simpleExp> | <stringValue>

<complexExp> := <equation> <equiv_op> <expression>

115

UNCLASSIFIED
CDRL No. 0002AC-5

<simpleExp> := <unary_op> <DataDictStr>

<stringValue> := “string”

<equation> := <term> | <complexEquation>
<complexEquation> := <term> <Add_Sub_Oper> <equation>

<Add_Sub_Oper> :=+ addition
- subtraction

<term> := <const> | <DataDictStr> | <parenEquation> | <complexTerm>
<const> := real numbers | integers

<DataDictStr> := <entity> | <entityAttr> | <SpecialFunct>
<parenEquation> := (<equation>)

<complexTerm> := <equation> <Mult_Div_Oper> <equation>

<Mult_Div_Oper>:= * multiplication
/ division

<unary_op>:=! not

<equiv_op> :=< less than
<= less than equal to
> greater than
>= greater than equal to
= equal to
= not equal to

Operator Precedence (ordered by most --> least priority)

Priority Operator Description

1 ! logical negation

2 * muldplication

/ division (left to right)
3 + addition

- subtraction (left to right)
4 < less than

<= less than equal to

> greater than (left to right)
>= greater than equal to
= equal to

116

T N N IE N U B GR AN B N U N B

!= not equal to

UNCLASSIFIED
CDRL No. 0002AC-5

6.1.5.1 Constants and Types for Rule Construction

The following is a listing of the EXPRESS source that defines symbolic constants and

aggregate types that are necessary for the specification of the rules BNF:

EXPRESS Specification :
*
)

SCHEMA selection_rules;

CONSTANT
Multiply
Divide
Add
Subtract

U_Op

Less
LessEqual
Greater
GreaterEqual
Equal
NotEqual

LP
RP

DQ
END_CONSTANT;

: STRING
: STRING
: STRING
: STRING :

: STRING :=

: STRING
: STRING :
: STRING :
: STRING :
: STRING :
: STRING :
: STRING

: STRING
: STRING

Jo+

W W
DV
i

%

>

. -

AN A
0o

V.

]
» Pl

"-a
.

-~
AR

-

TYPE DQuote = ENUMERATION OF (DQ);

END_TYPE;

TYPE LParen = ENUMERATION OF (LP);

END_TYPE;

TYPE RParen = ENUMERATION OF (RP);

END_TYPE;

TYPE Unary_Op = ENUMERATION OF (U_Op);

END_TYPE;

TYPE Strings = STRING;
END_TYPE;

TYPE Real_numbers = REAL;
END_TYPE;

TYPE Integers = INTEGER;
END_TYPE;

TYPE

TokenReturnValue = SELECT (Real_numbers, Integers, Strings);

117

UNCLASSIFIED
CDRL No. 0002AC-5
END_TYPE;
TYPE
Const = SELECT (Real_numbers, Integers);
END_TYPE;

TYPE Add_Sub_Oper = ENUMERATION OF
(Add, Subtract);
END_TYPE;
TYPE Mult_Div_Oper = ENUMERATION OF
(Multiply, Divide);
END_TYPE;
TVYPE Equiv_Op = ENUMERATION OF
(Less, LessEqual, Greater, GreaterEqual, Equal, NotEqual);
END_TYPE;
(*
6.1.5.2 DataDictStr Entity

The DataDictStr entity is an abstract base class from which two subclasses have been
created. The first is the EntityName class which holds the name of an entity name. The other is

the EntityAttrName which is used to support the following entity attribute specification :

entity[.entity[.entity(... .attrll]}

An example of an instance of this might be :

line.pointl.x

EXPRESS Specification :
x
)

ENTITY DataDictStr; -- abstract base class
END_ENTITY;

ENTITY EntityName
SUBTYPE OF (DataDictStr);
name : STRING;
END_ENTITY;
(*
Attribute definitions:

name: The name of the entity as it appears in the product data EXPRESS model.
x
)

EXPRESS Specification :
%
)

118

UNCLASSIFIED
CDRL No. 0002AC-5

ENTITY EntityAurName
SUBTYPE OF (DataDictStr);
entityName : LIST [1:?] OF STRING;
atrName : STRING;
END_ENTITY;
(*
Attribute definitions:;

entityName: List of entity name that corresponds to the structure : .ent[.ent[... .ent]]. of the
entity as it appears in the product data EXPRESS model.

attrName: The attribute name which the final value is associate with. These attribute name
should be specified as they appear in the product data EXPRESS model.

6.1.5.3 Rules Entities

A complex rule is composed of a list of rules. A rule is an Expressions anded together. The

following BNF segment defines the grammar of the EXPRESS entities :

<Rules> := <Expression> , [<Rules>]
EXPRE ification :
*)
ENTITY Rules;
expl : LIST [1:?7] OF Expression;
moreRulesFiring : BOOLEAN;
END_ENTITY;
(*
6.1.5.4 Expression Entities

The Expression syntax is represented by the following BNF segment :

<Expression> := <Equation> | <ComplexExp> | <SimpleExp> | <StringValue>

EXPRESS Specification ;
*)

TYPE

Expression = SELECT (Equation, ComplexExp, SimpleExp. StringValue);
END_TYPE;

ENTITY StringValue;
quote! : DQuote;
valuel : STRING;
quote2 : DQuote;

END_ENTITY;

ENTITY ComplexExp;

119

A

UNCLASSIFIED

CDRL No. 0002AC-5

Equl : Equation;

EquivOpl : Equiv_Op;

Expl : Expression;
END_ENTITY;

ENTITY SimpleExp;
Notl : Unary_Op;
DataDictVar : DataDictStr;
END_ENTITY;

(*
6.1.5.5 Equation Entities

The Equation syntax is represented by the following BNF segment :

<Equation> := <Term> | <ComplexEquation>

EXPRESS Specification :
*
)

TYPE
Equation = SELECT (Term, ComplexEquation);
END_TYPE;

ENTITY ComplexEquation;
Varl : Term;

Operl : Add_Sub_Oper;
Value : Equation;

END_ENTITY;

ENTITY ParenEquatioss;
Lparenthesis : LParen;
Equ : Equation;
Rparenthesis : RParen;

END_ENTITY;

(*
6.1.5.6 Term Entities

The Term syntax is represented by the following BNF segment :

<Term> := <Const> | <DataDictStr> | <ParenEquation> | <ComplexTerm>

EXPRESS Specification :
*
)
TYPE
Term = SELECT (Const, DataDictStr, ParenEquation, ComplexTerm):
END_TYPE:

END_SCHEMA;

120

. G SR B EE NP IE B N AN W aE G =

(*

6.1.5.7 ComplexTerm Entities

The Term syntax is represented by the following BNF segment :

<ComplexTerm> := <equation> <mult_div_oper> <equation>

EXPRESS Specification :
*)
ENTITY ComplexTerm;
equl : Equation;
Operl : Mult_Div_Oper;
equ2 : Equation;
END_ENTITY;
END_SCHEMA;

(*

121

UNCLASSIFIED
CDRL No. 0002AC-5

UNCLASSIFIED
CDRL No. 0002AC-5

6.1.6 EXPRESS-G Schema for Selection Rules
INTEGER REAL
r-—— - - |
Integers Real _numbers
m
Const
L I
m— = 7
Term
L__ .
TVan
~ |Equ r = = 7l Constant
ParenEquation] | ComplexEquation Oper] Add__Sub_OpiI I—c SIRIF:G
Lparentbesis Rpfrenthesis —_ — +. -
T | m L. b vae r— -
L_Lparen T LFlParen I Equation T ComplexTerm lOpﬂ' Mult_Dlv fpell _A
g & Al — — Tequ2
Constant Constant ul Constant
STRING STRING q - - - S'I('RIEJG
L Y EquivOp1 . -
Equiv_Op
ComplexExp i R Constant
Exp1 | STRING
& _ aluel ==l
T | STRING
Expression —{ StringValue
I -1 i
e —Egy I DQ Constant
guotegq DQuote I—C ST%')NG
moreRuleFiring - -4
SimpleExp DataDicVar__ of pataDictStr [t
I 1 Constant
117, Unay op | ~12d sTRING
=P U]|_ nan- p_|| " EntityName | |EntityAttrName
name r |
Rules J) entityName
STRING
rules L[0:?)

Figure 6.1-3 EXPRESS-G Model of Selection Rules Schema

122

E WD GE By En W AE Gy =

UNCLASSIFIED
CDRL No. 0002AC-5

6.2 Product Model Schema Specification

Product data interpretable by the MO system must be modeled in the EXPRESS language
and stored as STEP objects in a repository that is interfaced to the STEP Data Access Interface
(SDAI). Currently the SDAI only supports a STEP physical file. In the following sections an
EXPRESS schema for a PWB product is presented. This schema was created to demonstrate
the functionality of the MO system. The schema defines lists of entities that model features of a
PWB.

6.2.1 Printed Wiring Board Product Data Model

At Raytheon, PWB product data is stored in the RAPIDS (Raytheon's Automated
Placement and Interconnect Design System) database. Two interfaces were developed to

support the transition of PWB product data to and from STEP physical files.

Generating the STEP physical file is facilitated by the interface RAPIDS to STEP which
maps RAPIDS data items into instantiated STEP entities. We created an information model
using the EXPRESS information modeling language. The model was based on the RAPIDS
database. The EXPRESS information model was compiled using the STEP Tools express2c++
compiler which generated a STEP schema and a C++ class library. The class library consists of
methods for creating and referencing persistent instances of the STEP entities which are stored
in a ROSE database. The STEP schema is used by the STEP Tools STEP filer for reading and
writing the STEP physical file.

The MO system uses the STEP data directly, as well as for information exchange between
the various members of the design team. At Raytheon, the top level team would most likely be
using RAPIDS. This is not a requirement for using the core of the MO system. The only
requirement is that the top level team and the lower level teams are capable of creating,

exchanging and using the STEP physical file.

The Manufacturing Team passes back a consolidated design position to the top level. To aid
in the generation of a consolidated position, conflict resolution and design merging must be
supported. This is done using the STEP Toolkit from STEP Tools Inc. The diff tool reads two

versions of a design and creates a delta file. The difference report generator reads the difference

123

UNCLASSIFIED
CDRL No. 0002AC-5

file and the original design, and presents each STEP entity and its attributes with the original

values and its change state clearly marked with an asterisks.

Once the conflicts of the Manufacturing team members have been resolved, design versions
are merged using the STEP Tools sed tool. The sed tool read the delta file created by the diff
tool and updates the original design version. This updated version of the design is transferred

back to the top-level product team as the Manufacturing Team’s consolidated position.
6.2.1.1 PWB Design Schema

This is the top level schema for the Raytheon PWB EXPRESS model. The model is
primarily derived from the Raytheon's Automated Placement and Interconnect Design System
(RAPIDS) data dictionary. RAPIDS is a concurrent engineering design station for Printed
Wiring Boards. Its database was designed to capture data from many diverse CAE, CAD,
CAM, CAT systems as well as analysis systems for thermal, reliability, critical signal analysis,
and manufacturability. Emphasis was placed on making the model extremely modular and
flexible.

EXP ification ;
*)

INCLUDE 'rpdtypes.exp';
INCLUDE 'rpd_header.exp';
INCLUDE 'alias.exp’';
INCLUDE ‘'annotation.exp’;
INCLUDE ‘cari.exp’';
INCLUDE ‘'class.exp';
INCLUDE ‘comment.exp’;
INCLUDE ‘'dr_block.exp';
INCLUDE ‘'gate.exp’;
INCLUDE 'net.exp’';
INCLUDE 'metal_area.exp';
INCLUDE ‘'part.exp’;
INCLUDE ‘'pin.exp’;
INCLUDE ‘'route.exp';
INCLUDE 'via.exp';
INCLUDE 'xref.exp’';
INCLUDE ‘'shape.exp’';
INCLUDE 'stackup.exp’;
INCLUDE 'model.exp’';

SCHEMA rpd_design;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM rpd_header_schema;
REFERENCE FROM alias_schema;
REFERENCE FROM annotation_schema;
REFERENCE FROM cari_schema;

124

REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE
REFERENCE

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

class_schema;
comment_schema;
dr_block_schema;
gate_schema;
net_schema;
metal_area_schema;
part_schema;
pin_schema;
route_schema;
via_schema;
xref_schema;
model_schema;
shape_schema;
stackup_schema;

ENTITY rpd_design_rec;
alias_header
LIST [0:?]) of alias_rec;
annotation_header : header_rec;
annotations
cari_header
cari_rules
class_header
LIST [0:?] of class_rec;
comment_header : header_rec;
LIST [0:?]) of comment_rec;
dr_block_header : header_rec;
dr_blocks
gate_header

aliases

classes

comments

gates

LIsT

net_header

nets

part_header

parts

LIST

pins_header

pins :

route_header
LIST [0:?] of route_rec;

routes

vias_header

vias

xref_header

xrefs

shapes_header
: LIST [0:?] of pad_shape_rec;

shapes

stackups_header
stackups

models
models

LIST

: header_rec;

LIST [0:?] of annotation_rec;

header_rec;
LIST [0:?] of cari_rule_rec;
: header_rec;

LIST [0:?]) of dr_block_rec;

header_rec;
[0:?]) of gate_rec;
header_rec;

LIST [0:?] of net_rec;

header_rec;
[0:?]) of part_rec;
header_rec;

LIST [0:?] of pin_rec;

header_rec;

header_rec;

LIST [0:?] of via_rec;

header_rec;
[0:?] of xXref_rec;
header_rec;

header_rec;

LIST [0:?] of stackup_rec;
LIST [0:?) of model_rec;

END_ENTITY;

END_SCHEMA;

125

list

list

list

list

list

list

list

list

list

list

list

list

list

list

list
list

of

of

of

of

of

of

of

of

of

of

of

of

of

of

of
of

UNCLASSIFIED
CDRL No. 0002AC-5

aliases
annotations
cari rules
classes

design comments
design rule blocks
gates

nets

parts

pins

routes

vias

xrefs

pad shapes

pad stackups
part mechanical

UNCLASSIFIED
CDRL No. 0002AC-5

6.2.1.2 PWB Generic Types and Entities

This schema defines types and entities that are used throughout the entire PWB model.
these types and entities are generic and low level and are used as resources by higher level
entities.

PR ifi
*)

SCHEMA rpdtypes_schema;

TYPE token = STRING; END_TYPE;

TYPE name_type = STRING; END_TYPE;
TYPE layer_type = STRING; END_TYPE;
TYPE keyword = STRING; END_TYPE;

TYPE dimension = INTEGER; END_TYPE;
TYPE shape_type = STRING; END_TYPE;
TYPE loading_type = REAL; END_TYPE;
TYPE blocking_type = STRING; END_TYPE:

-- BINARY data type is not currently supported by the EXPRESS compiler
-- Assumming 8 bit characters (256 layers, 1 bit per layer)
TYPE bitmask = ARRAY [0:31] of STRING(1); END_TYPE;

ENTITY time_rec;
high : INTEGER;
low : INTEGER;

END_ENTITY;

ENTITY r_range_rec;
minimum : REAL;
maximum : REAL;

END_ENTITY;

ENTITY i_range_rec;
minimum : INTEGER;
maximum : INTEGER;

END_ENTITY;

ENTITY r_span_rec;
minimum : REAL;
maximum : REAL;
span : REAL;

END_ENTITY;

ENTITY i_span_rec;
minimum : INTEGER;
maximum : INTEGER;
span : INTEGER;

126

UNCLASSIFIED
CDRL No. 0002AC-5

END_ENTITY;

ENTITY pin_name_rec;
device : name_type;

gate : name_type;
pin : name_type;
END_ENTITY;

ENTITY vertex_rec;
X : dimension;
y : dimension;
radius : dimension;
END_ENTITY;

ENTITY point_rec;
X : dimension;
y : dimension;

END_ENTITY;

ENTITY loading_rec;
rated : REAL;
derated : REAL;
actual : REAL;

END_ENTITY;

ENTITY attribute_rec;
key : keyword;
value : STRING;

END_ENTITY;

END_SCHEMA ;
6.2.1.3 Header Data Schema

This schema defines entities for the unit and scale of other entity instances and the creation,

access, and modification time entities.

EXPRE ification :
*)

SCHEMA rpd_header_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY version_rec;
name : NAME_TYPE;
revision : NAME_TYPE;

END_ENTITY;

ENTITY header_rec;
file_name : NAME_TYPE;
version : NAME_TYPE;
creation : TIME_REC;
access : TIME_REC;
modification : TIME_REC;
unit : NAME_TYPE;

127

UNCLASSIFIED
CDRL No. 0002AC-5

scale : REAL;
tool : NAME_TYPE;
tool_ver : INTEGER;
tool_rev : INTEGER;
assembly : version_rec;
drawing : version_rec;
codeid : NAME_TYPE; -- Wire Wrap code id
comment : STRING;
attribute : LIST OF ATTRIBUTE_REC;
END_ENTITY;

END_SCHEMA;

6.2.1.4 Alias Data Schema

This is the EXPRESS schema for storing data aliases required by limitations of some CAx
system (e.g. NET names in one system are restricted to a particular length that has been
violated by a system that is upstream in the design process)

EXPRESS Specification :
*)
SCHEMA alias_schema;

REFERENCE FROM rpdtypes_schema;

ENTITY alias_list_rec;
rapids_name : NAME_TYPE;
alias_name : NAME_TYPE;
object_name : NAME_TYPE;

END_ENTITY;

ENTITY alias_rec;

object : NAME_TYPE; -- type of object
property : NAME_TYPE; -- object property
system : NAME_TYPE; -- system requiring an alias
alias_list : LIST [0:?]) of alias_list_rec; -- list of aliases
comment : NAME_TYPE;
END_ENTITY;
END_SCHEMA;

6.2.1.5 Annotation Data Schema

This is the EXPRESS model for annotation data. Currently, annotation is limited to text.

EXPRESS Specification :
*)

SCHEMA annotation_schema;

REFERENCE FROM rpdtypes_schema;

128

UNCLASSIFIED
CDRL No. 0002AC-5

ENTITY annotation_rec;

text : STRING; -- label
text_height : DIMENSION; ~-- text size
text_width : DIMENSION; -- text size
line_width : DIMENSION; -- width of text line
layer : NAME_TYPE; -- text layer
location : POINT_REC; ~-- text location
rotation : INTEGER; -- text rotation
justification : NAME_TYPE; -- text justification
END_ENTITY;
END_SCHEMA;

6.2.1.6 CARI Data Schema

This Express model is in place for Raytheon legacy data for its proprietary Computer Aided
Routing of Interconnect (CARI) system. As a generic model this should be eliminated.

EXPRESS Specification :
E 3
)

SCHEMA cari_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY cari_rule_rec;

cari_id : NAME_TYPE; -~ keyword for CARI record
record : NAME_TYPE; -- CARI record card image
comment : NAME_TYPE; -- pointer to comment string
END_ENTITY;
END_SCHEMA;

6.2.1.7 Class Data Schema

This EXPRESS model defines data entities for classifying signal nets into groups for

particular design rules.

EXPRESS Specification :
E
)

SCHEMA class_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY class_rec;

group_name : NAME_TYPE; -- class identifier
design_rules : NAME_TYPE; -- design rules block
signal_list : LIST (0:?] of NAME_TYPE; ~-- signals in the class
attribute : LIST [0:?]) of ATTRIBUTE_REC; -- user defined attribute
comments : LIST [0:?]) of STRING; -- text description
END_ENTITY;
END_SCHEMA;
129

UNCLASSIFIED
CDRL No. 0002AC-5

6.2.1.8 Comment Data Schema

This schema defines a single entity for a comment a list of comments is kept with each
PWB design.

EXPRESS Specification :
*
)

SCHEMA comment_schema;
REFERENCE FROM rpdtypes_schema;
ENTITY comment_rec;

comment : NAME_TYPE;
END_ENTITY;

END_SCHEMA;

6.2.1.9 Design Rule Data Schema

This EXPRESS schema defines entities for design rules. Design rules are stored in named

blocks. Each block except for the GLOBAL block has a Parent name which it inherits from.

EXPRE ification ;
%*
)

SCHEMA dr_block_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY substrate_block_rec;

name : NAME_TYPE; -- substrate name
technology : NAME_TYPE; -- technology code
mode : INTEGER; -- code for mode
layers : INTEGER; -- number of layers
pad_stack_file : NAME_TYPE; -- RLD file containing pad
stackups
layer_model : LIST [0:?] of LAYER_TYPE; -- layer model names
separation : LIST [0:?] of INTEGER; -- spacing between layers
prepreg_mat : NAME_TYPE; -- prepreg material
substrate_mat : NAME_TYPE; -- substrate material
solder_mat : NAME_TYPE; -- solder_mask material
attribute : LIST [0:?] of ATTRIBUTE_REC; -- user defined attributes
END_ENTITY;
ENTITY via_spec_rxec;
via_shape : STRING; -- default via shape
via_length : DIMENSION; -- default via length
via_height : DIMENSION; -- default via height
END_ENTITY;
ENTITY via_step_rec;
via_spacing : DIMENSION; -- minimum via separation
via_depth : INTEGER; -- maximum via depth
130

first_layer : INTEGER;

pattern : NAME_TYPE;

direction : REAL;
END_ENTITY;

ENTITY min_space_rec;
line_to_line : INTEGER;
line_to_pad : INTEGER;
pad_to_pad : INTEGER;
line_to_profile : INTEGER;
pad_to_profile : INTEGER;

END_ENTITY;

ENTITY design_block_rec;
boundary : LIST [0:?] of vertex_rec;
layer_t : LAYER_TYPE;
layer_polarity : NAME_TYPE;
X_grid : LIST [0:?)] of REAL;
y_grid : LIST [0:?]) of REAL;
grid_offset : POINT_REC;
x_via_grid : LIST [0:?] of REAL;
y_via_grid : LIST [0:?] of REAL;
via_grid_offset : POINT_REC;
spacing : min_space_rec;
via_spec : via_spec_rec;
via_stepping : via_step_rec;
acid_trap : INTEGER;
attribute : LIST [0:?] of ATTRIBUTE_REC;
END_ENTITY;

ENTITY miter_rec;
angle : DIMENSION;
length : I_RANGE_REC;
END_ENTITY;

ENTITY termination_rec;

term_type : TOKEN;
OUTPUT| DUAL)

value : REAL;

unterm : DIMENSION;
END_ENTITY;

ENTITY necking_rec;
line_width : DIMENSION;
length : I_RANGE_REC;
spacing : DIMENSION;

necks

END_ENTITY;

ENTITY parallelism_rec;
parallel_type : NAME TYPE;
plane : NAME_TYPE;
separation : DIMENSION;

traces
limit : DIMENSION;

threshold

END_ENTITY ;

UNCLASSIFIED
CDRL No. 0002AC-5

first stepping layer
stepping pattern
direction for first step

line-to-line spacing
line-to-pad spacing
pad-~-to-pad spacing
line-to-profile spacing
pad-to-profile spacing

design rules boundary
design rules layer

layer polarity codes
board routing x grid size
board routing y grid size
routing grid offset

board via x grid size
board via y grid size

via grid offset

feature spacing rules
pointer to default via
via stepping data

acid trap angle

user defined attributes

mitering angle
length of miter

type of termination (INPUT |

resistor value in ohms
max unterminated length

minimum necked width
length of neck
unnecked spacing between 2

total or individual
coplanar or biplanar
separation threshold between

parallel traces lenath

post_spacin
post_stacku

END_ENTITY;

layers : bi
layer_t : L
signal_type

ecl, etc.

ENTITY shield_rec;

shield _type NAME_TYPE;
stripline,

signal NAME_TYPE;

cover_width DIMENSION;

strip_width : DIMENSION;

isolation DIMENSION;

g : DIMENSION;
p: NAME_TYPE;

ENTITY signal_block_rec;

tmask;
IST [0:?] of LAYER_TYPE;
NAME_TYPE;

line_width DIMENSION;
line_shape NAME_TYPE;
max_length : DIMENSION;
min_length : DIMENSION;
stub DIMENSION;

net_order : NAME_TYPE;

DAISY, STAR, WIREWRAP

route_bias : REAL;

clearance DIMENSION;
place_bias REAL;

via_type NAME_TYPE;
transmission : DIMENSION;

span DIMENSION;

via_count : INTEGER;

tolerance DIMENSION;

miter : miter_rec;

termination termination_rec;

necking : n

ecking_rec;

parallelism : LIST [0:?]) of parallelism_rec;

LIST [0:?] of ATTRIBUTE_REC;

delay_rule r_span_rec;
shield_data shield_rec;
attribute

END_ENTITY;

ENTITY layer_block_rec;

layer_t LAYER_TYPE;
cu_weight REAL;
thickness REAL;
impedance INTEGER;
purpose NAME_TYPE;
attribute

END_ENTITY;

LIST [0:?]) of ATTRIBUTE_REC;

ENTITY device_block_rec;

x_grid : LI
y_grid : LI
grid_offset
layer_name
via_flag

location_se
auto_insert

ST [0:?] of REAL;
ST [0:?] of REAL;
POINT_REC;
LAYER_TYPE;

BOOLEAN;
t : NAME_TYPE;
NAME_TYPE;

132

UNCLASSIFIED
CDRL No. 0002AC-5

shielding type: microstrip,

grounded, guarded, shielded
signal shield connected
cover width for shield
stripline width

isolation dist

via post space distance
stackup for wvias for posts

eligible routing layers
list of layer types
signal type: power, ground,

default wire line width
line aperture_shape

max signal conductor length
min signal conductor length
max stub length

stringing algorithm: MST,

routing priority

net isolation distance
placement priority

pad stack for via

max transmission length
driver span

maximum # of vias
matched length tolerance
corner mitering rules
terminatin rules
necking rules

-- parallelism rules
propagation delay rules
shielding rules

user defined attributes

design rules layer
copper weight

thickness of metal
layer impedence

user define purpose
user defined attributes

placement grid size
placement grid size
placement grid offset
component placement layer
via inhibit flag
placement location set
auto insertion code

technology : NAME_TYPE;

device_bias : REAL;

thermal_bias : REAL;

space_rule : LIST [0:?] OF NAME_TYPE;
decoupling : DIMENSION;

overlap : LIST [0:?] OF NAME_TYPE;
wire_bond : I_RANGE_REC;

aspect : R_RANGE_REC;

heat_sink : NAME_TYPE;

attribute : LIST [0:?] of ATTRIBUTE_REC;

END_ENTITY;

ENTITY metal_area_block_rec;
pin_clearance : DIMENSION;
via_clearance : DIMENSION;
wire_clearance : DIMENSION;
conn_number : INTEGER;
conn_width : DIMENSION;
cutout_flag : BOOLEAN;
suppress_flag : BOOLEAN;
show_connect : BOOLEAN;
default_drill : DIMENSION;
attribute : LIST [0:?] of ATTRIBUTE_REC;

END_ENTITY;

ENTITY dr_block_rec;
block_name : NAME_TYPE;
parent_name : NAME_TYPE;
block
substrate_block : substrate_block_rec;
design_block : design_block_rec;
signal_block : signal_block_rec;
layer_block : layer_ block_rec;
device_block : device_block_rec;
metal_area_block : metal_area_block_rec;
END_ENTITY;

END_SCHEMA ;
6.2.1.10 Gate Data Schema

This schema defines entities for device gates.

EXPRESS Specification :
*
)

SCHEMA gate_schema;

REFERENCE FROM rpdtypes_schema;

ENTITY gate_package_rec;
component : NAME_TYPE;
gate_no : NAME_TYPE;

END_ENTITY;

ENTITY sheet_rec;
num : NAME_TYPE;

UNCLASSIFIED
CDRL No. 0002AC-5

device technology

device affinitity

thermal affinitity
placement spaceing rule
decoupling distance
placement overlap rule
wire bonding device rules
aspect ratio for resist
heat sink id

user defined attributes

metal to pin clearance
metal to via clearance
metal to wire clearance
connections to each pin
width of pin connections
flag to generate cutouts
unused pad suppression
show pad connections
default drill size

user defined attributes

name of design rule block
name of parent design rule

substrate rules
design rules
signal rules
level rules
signal rules
metal area rules

-- symbolic component name
-- element number

-- sheet number

X_location : REAL;
y_location : REAL;
END_ENTITY;

ENTITY gate_net_rec;
logic_pin : NAME_TYPE;
signal : NAME_TYPE;

END_ENTITY;

ENTITY gate_rec;
instance : NAME_TYPE;
package : gate_package_rec;
old_package : gate_package_rec;
gate_swap_code : NAME_TYPE;
swap_inhibit : INTEGER;
gate_count : INTEGER;
sheet : sheet_rec;
comment : NAME_ TYPE;
signal_map : LIST [0:?] of gate_net_rec;
old_signal_map : LIST [0:?] of gate_net_rec;
attribute : LIST [0:?] of attribute_rec;
END_ENTITY;

END_SCHEA;

6.2.1.11 Net Data Schema

This schema defines entities for net signals.

EXPRE ification ;
*
)

SCHEMA net_schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM pin_schema;
REFERENCE FROM via_schema;
REFERENCE FROM route_schema;
REFERENCE FROM metal_area_schema;
REFERENCE FROM dr_block_schema;

ENTITY ww_pin_data_rec;

UNCLASSIFIED
CDRL No. 0002AC-5

location on sheet
location on sheet

logical pin name
default net name

gate name (handle)
package reference
original package ref
swap group name
gate/pin swapability
identical gate/device
schematic location
pointer to comment string
list of pins and nets
list of pins and nets
user defined attribute

method : NAME_TYPE; ~-- installation method

code : NAME_TYPE; ~- wire type code

seguence : INTEGER; ~- wrap sequence

group : NAME_TYPE; -- wire group

length : DIMENSION; ~- xs wire length

findno : NAME_TYPE; ~-

inst_path : STRING; ~- installation path
END_ENTITY;

ENTITY ww_data_rec;

run_number : INTEGER; ~- wire wrap run number
func : NAME_TYPE; ~- net function
END_ENTITY;

ENTITY ww_pin_pair_rec;

134

method : NAME_TYPE;
code : NAME_TYPE;
sequence INTEGER;
group : NAME_TYPE;
length : INTEGER;
findno : NAME_TYPE;
inst_path : NAME_TYPE;
END_ENTITY;

ENTITY pin_pair_rec;

t_pin_name : pin_name_rec; -
f_pin_name : pin_name_rec; -
t_pin : pin_rec; -
f_pin : pin_rec; -
pp_index : INTEGER; -
pPp : route_rec; -
ww_pins : ww_pin_pair_rec; -

END_ENTITY;

ENTITY net_rec;
name : NAME_TYPE;
design_rules : NAME_TYPE;
signal_type : NAME_TYPE;

UNCLASSIFIED
CDRL No. 0002AC-5

installation method
wire type code

wrap sequence

wire group

xs wire length

installation path

to pin name

from pin name

to pin object

from pin object

index to route object
pointer to route object
wire wrap pin pair data

-- name of net
-- design rules block
-- signal type

pin_pairs : LIST [0:?] OF pin_pair_rec; -- list of pin pairs

ww_data : ww_data_rec;
layer : BITMASK;

-- wire wrap data
-- eligible routing layers

layer_t : LIST [0:?] OF NAME_TYPE; -- list of layer types

line_width : DIMENSION;
line_shape : NAME_TYPE;
max_length : DIMENSION;
length
min_length : DIMENSION;
length
stub : DIMENSION;
net_order : NAME_TYPE;
clearance : DIMENSION;
route_bias : REAL;
place_bias : REAL;
via_type : NAME_TYPE;
transmission : DIMENSION;
span : DIMENSION;
via_count INTEGER;
miter : miter_rec;
termination : termination_rec;
necking : necking_rec;

-- line width for routing
-- line aperture_shape
-- minimum total wire

-- maximum total wire

-- maximum stub length

-- stringing algorithm

-- net isolation distance
-- routing priority

-- placement priority

-- absolute pin(via) type
~-- transmission length

-- driver span

-- maximum # of vias

-- cornexr mitering rules

-- terminatin rules

-- necking rules

parallelism : LIST [0:?] of parallelism_rec; -- parallelism rules

shield : shield_rec;

-- shielding rules

pin_names : LIST [0:?] of pin_name_rec; ~- pin names in the net

pins : LIST (0:?) OF pin_rec;

-- pin records in the net

routes : LIST [0:?] of route_rec; -- list of net routes

vias : LIST [0:?] of via_rec;

~- list of net vias

metal_areas : LIST [0:?] of metal_area_rec; -- list of net metal areas

delay_rule : r_span_rec;
comment : NAME_TYPE;

-- propagation delay rules
-- comment string

attribute : LIST [(0:?] OF ATTRIBUTE_REC; -- user defined attribute
END_ENTITY;
END_SCHEMA;
135

UNCLASSIFIED
CDRL No. 0002AC-5

6.2.1.12 Metal Area Data Schema

This schema defines entities for metal areas (areas of a PWB flooded or meshed with

conductor material).

EXPRESS Specification :
*
)

SCHEMA metal_area_schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM dr_block_schema;

ENTITY cutout_rec;

cutout_type : NAME_TYPE; -- type of cutout
points : LIST [0:?] of POINT_REC; -- cutout description
END_ENTITY;

ENTITY metal_area_rec;
signal : NAME_TYPE;

metal_area_type : NAME_TYPE; -- type of metal area
style : NAME_TYPE; -- style of metal area
design_rules : dr_block_rec; -- name of design rule block
aperture : DIMENSION; -- apperature for photoplot
spacing : DIMENSION; -- line spacing in photoplot
layer : INTEGER; -- layer for metal area
cutout_shape : NAME_TYPE; -- shape for pin cutouts
origin : POINT REC; -- boundary origin
boundary : LIST [0:2] of POINT_REC; -- boundary description
user_cutouts : LIST [0:?] of cutout_rec; -- defined cutouts
auto_cutouts : LIST [0:?] of cutout_rec; -- generated cutouts
comment : NAME_TYPE; -- comment string
attribute : LIST [0:?] of ATTRIBUTE_REC; -- user defined attribute
END_ENTITY;
END_SCHEMA;

6.2.1.13 Part Data Schema
This schema defines the electrical characteristics of the PWB components.

EXPRESS Specification :
*)

SCHEMA part_schema;
REFERENCE FROM rpdtypes_schema;

ENTITY pin_map_rec;

logic_pin : NAME_TYPE; -- logical pin name

component_pin : NAME_TYPE; -- component pin name

pin_swap_code : NAME_TYPE; -- pin swap group
END_ENTITY;

ENTITY element_rec;

136

elem_no : NAME_TYPE;
elem_swap : NAME_TYPE;

UNCLASSIFIED
CDRL No. 0002AC-5

-- element number
-- element Swap Code

pin_map : LIST {0:?] OF pin_map_rec; -- element to device pin map

END_ENTITY;

ENTITY geo_data_rec;
rev : NAME_TYPE;
modn : NAME_TYPE;
clear_z : DIMENSION;
height : DIMENSION;
length : DIMENSION;
width : DIMENSION;
hsx : DIMENSION;
hsy : DIMENSION;
mass : REAL;
pin_offset : point_rec;

END_ENTITY;

ENTITY op_data_rec;
rev : NAME_TYPE;
modn : NAME_TYPE;
power_dissip : REAL;
max_power_dissip : REAL;
peak_power : REAL;
min_power : REAL;
END_ENTITY;

ENTITY therm_data_rec;

rev : NAME_TYPE;

modn : NAME_TYPE;

emit : REAL;

rsbtm : REAL;

rsjb : REAL;

rsjc : REAL;

rstop : REAL;

spht : REAL;

jtm : REAL;

thermal_type_code : INTEGER;

thermal_type : NAME_TYPE;
END_ENTITY;

ENTITY pin_time_rec;
min : REAL;
typical : REAL;
max : REAL;

END_ENTITY;

ENTITY input_current_rec;
iil : REAL;
iih : REAL;

END_ENTITY;

ENTITY input_voltage_rec;
vil : REAL;
vih : REAL;

END_ENTITY;

ENTITY output_current_rec;

-- pin data rev

-~ pin data mod

-- component CLEARZ

-- component HEIGHT

-- component LENGTH

-- ¢lib component WIDTH
-- ¢lib HSX pin spacing
-- clib HSY pin spacing
-- component MASS

-- pin offset

-- pin data rev

-- pin data mod

-- power dissipation

-- max power dissipation
-- peak power

-- min power

-- pin data rev
-- pin data mod

-- low current
-- high current

-- low voltage
-- high voltage

137

iol : REAL;
ioh : REAL;
iozl : REAL;
iozh : REAL;
END_ENTITY;

ENTITY output_voltage_rec;
vol : REAL;
voh : REAL;
vol_min : REAL;
voh_max : REAL;
END_ENTITY;

ENTITY bi_pin_rec;
input_current
input_voltage
output_current
output_voltage

END_ENTITY;

input_current_rec;

input_voltage_rec;
output_current_rec;
output_voltage_rec;

ENTITY in_pin_rec;
input_current : input_current_rec;
input_voltage input_voltage_rec;
END_ENTITY;

ENTITY ou_pin_rec;
ou_config_code : INTEGER;
ou_config : NAME_TYPE;
output_current : output_current_rec;
output_voltage output_voltage_rec;
END_ENTITY;

ENTITY pin_data_rec;
rev : NAME_TYPE;
modn : NAME_TYPE;
pin_number NAME_TYPE;
pin_name NAME_TYPE;
pin_swap_code NAME_TYPE;
pin_offset POINT_REC;
the origin of the device
capacitance : REAL;

fall_time pin_time_rec;

rise_time pin_time_rec;

pin_type NAME_TYPE;

bi_pin bi_pin_rec;

in_pin in_pin_rec;

ou_pin ou_pin_rec;
END_ENTITY;

ENTITY prop_delay_rec;
rev : NAME_TYPE;
modn : NAME_TYPE;

pin_name_start NAME_TVPE;
pin_name_end NAME_TY!'E;
pin_num_start NAME_TYPE;
pin_num_end NAME_TYPE;
phl : REAL;

plh : REAL;

138

UNCLASSIFIED
CDRL No. 0002AC-5

-- low voltage
-- high voltage
-- min voltage
-- max voltage

-- pin data rev

-- pin data mod

-- component pin number

-- component pin name

-- pin swap group name

-- center of the pin relative to

-- rise time

-- fall time

-- B, I, ©

-- bi_directional pin data
-- input pin data

-- output pin data

-- pin data rev
-- pin data mod

UNCLASSIFIED
CDRL No. 0002AC-5

unateness : NAME_TYPE;
END_ENTITY;

ENTITY part_rec;

part : NAME_TYPE; -~ part name
technology : NAME_TYPE; -- device technology
spice_model : NAME_TYPE; ~-- spice model for the device
heat_flag : BOOLEAN; -- heat sensitivity flag
stat_flag : BOOLEAN; -~ static sensitivity flag
polar_flag : BOOLEAN; -- polar component flag
part_type : NAME_TYPE; -- component type
part_class : NAME_TYPE; -- component class
Jdescription : STRING; -- component description
mil_spec : NAME_TYPE; -- component mil_spec name
findno : NAME_TYPE; -- component find number
tolerance : NAME_TYPE; -- component tolerance
value : NAME_TYPE; -- component value
mech_name : NAME_TYPE; -- mechanical name
manufacturer : NAME_TYPE; -- part manufacturer
elements : LIST [0:?] OF element_rec; -- list of elements in part
geo_data : geo_data_rec; -- geometry data
op_data : op_data_rec;
therm_data : therm_data_rec; -- thermal data
pin_data : LIST (0:?] OF pin_data_rec; -- pin data
delay_data : LIST [0:?] OF prop_delay_rec; -- delay data
comment : NAME_TYPE; -- comment string
attribute : LIST [0:?] OF ATTRIBUTE_REC; -~ user defined attributes
END_ENTITY;
END_SCHEMA;

6.2.1.14 Pin Data Schema
This schema defines entities for component pins instantiated on the PWB.

EXPRE ification :
*)

SCHEMA pin_schema;
REFERENCE FROM rpdtypes_schema;

TYPE function_type = STRING(1l) FIXED; END_TYPE;
-- I for input or source
-- O output or sink
-- B bidirectional
-- T pin on a terminating resistor

ENTITY load_data_rec;

power : LOADING_TYPE; -- power loading data

voltage : LOADING_TYPE; -- voltage loading data

current : LOADING_TYPE; -~ current loading data

temperature : LOADING_TYPE; -- temperature loading data
END_ENTITY;

ENTITY pin_rec;
pin : NAME_TYPE; -- plin name

139

UNCLASSIFIED
CDRL No. 0002AC-5

signal NAME_TYPE; -- signal name
offset POINT_REC; -- pin offset from origin
location POINT_REC; -- pin location on board
rotation REAL; -- pin rotation in d=grees
range BITMASK; -- pin depth
suppression BITMASK; -- pad suppression mask
func FUNCTION_TYPE; -- pin function code
stepping REAL; -- first stevping direction
pin_type NAME_TYPE; -- absolute pin type
swap_inhibit INTEGER; -- gate/pin swapability
load_data load_data_rec; -- pin loadiny data
comment NAME_TYPE; -- comment string
attribute LIST [0:?] of ATTRIBUTE_REC;-- user defined attributes

END_ENTITY;

END_SCHEMA;

6.2.1.15 Conductor Routing Data Schema

This schema defines entities for conductor routes of net signals.

EXPRESS Specification :
*)

SCHEMA route_schema;
REFERENCE FROM rpdtypes_schema;

REFERENCE FROM net_schema;
REFERENCE FROM pin_schema;

ENTITY segment_rec;
x : DIMENSION;
y : DIMENSION;

radius INTEGER;
segment_width DIMENSION;
END_ENTITY;

ENTITY ww_route_data_rec;

revision NAME_TYPE;
sequence INTEGER;
bends LIST [0:?] of POINT REC;

END_ENTITY;

ENTITY route_rec;

signal NAME_TYPE;
route_type NAME_TYPE;
status NAME_TYPE;

target_name
object_name

pin_n~'ne_rec;
pin_name_rec;

target_piln pin_rec;
object_pin pin_rec;
target_loc POINT_REC;
object_loc : POINT_REC;
protect BOOLEAN;
target_layer INTEGER;
object_layer INTEGER;

path LIST [0:?) OF segment_rec;

-- x coord of point on the path
-- y coord of point on the path

for circular segment
the width of the segment

wire revision
wire wrap seguence
wire wrap bend points

associated signal name
type of connecti:-n

path status

assigned target pin name
assigned object pin name
assigned target pin
assigned object pin
coordinates of the target
coordinates of the cobject
path protection flag
assigned starting layer
assigned ending layer
list of patia s2gmentirs

UNCLASSIFI{ED
CDRL No. 0002AC-5

shield_id : INTEGER;

pin_pair_index : INTEGER;

pin_pair : pin_pair_rec;

ww_data : ww_route_data_rec;

comment : NAME_TYPE;
END_ENTITY;

~- code for linking shie.uing
~- link to pin-pair data

-- link to pin-pair data

-- wire wrapping data

END_SCHEMA ;
6.2.1.16 Via Data Schema

This schema defines entities for signal net vias.

EXPRESS Specification :

*)

SCHEMA via_schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM dr_block_schema;
REFERENCE FROM net_schema;

ENTITY via_rec;

signal : NAME_TYPE; -- name of signal net
location : POINT_REC; -- board coordinates
rotation : REAL; -- via rotation in degrees
range : BITMASK; -- pin depth
suppression : BITMASK; ~-- pad suppression mask
via_type : NAME_TYPE; -- absolute via type
via_use : NAME_TYPE; -- special via use
shield_id : INTEGER; -- code for linking shielding
shield : shield_rec; --
comment : NAME_TYPE; -- comment string
attribute : LIST [0:?] of ATTRIBUTE_REC; -- user defined attributes
END_ENTITY;
END_SCHEMA;

6.2.1.17 Library Cross Reference Data Schema
This schema defines entities for the device cross references.

EXPRESS Specification :
*
)

SCHEMA xref_schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM pin_schema;

ENTITY xref_rec;

symbolic : NAME_TYPE;
old_symbolic : NAME_TYPE;
model : NAME_TYPE;
location : POINT_REC:

symbolic name

old symbolic name
mechanical model name
board location

mirror INTEGER;
rotation : REAL;
symbolic_flag BOOLEAN;
external BOOLEAN;
usa_device NAME_TYPE;
physical NAME_TYPE;
raytheon NAME_TYPE;
design_rules NAME_TYPE;
layer : NAME_TYPE;

via_flag BOOLEAN;
location_set NAME_TYPE;
auto_insert NAME_TYPE;
swap_inhibit INTEGER;

fix : BOOLEAN;
device_bias : REAL;
thermal_bias : REAL;
coupling
decoupling
space_rule

INTEGER;

overlap
heat_sink : NAME_TYPE;
load_data : load_data_rec;
comment NAME_TYPE;
attribute

END_ENTITY;

END_SCHEMA;

6.2.2

Imetal_area_schemal

class_schema jo—-

annotation_schema o

pin_schema jomm—

LIST [0:?] of NAME_TYPE; -

LIST [0:?] of NAME_TYPE; --
LIST [0:?] of NAME_TYPE; -

LIST [0:?] of attribute_rec; --

model _schema

stackup_schema jp___|

shape_schema jo—uo

xref_schema, p—

md_header_schema

rpd_design

UNCLASSIFIED
CDRL No. 0002AC-5

mirror flag

rotation flag

symbolic pin names used flag
connector flag

USA device names

CLIB device name

raytheon part number
design rules block
component placement layer
inhibit via under device
placement location set
auto insertion code
gate/pin swapability code
fixed placement flag
device affinitaty

thermal affinity
placement coupled devices
decoupling distance
placement spaceing rule
placement overlap rule
heat sink name

loading data

comment strirc

user definer - _ibutes

PWB Design Data EXPRESS-G Model

alias_schema

_a net_schema

pat_schema

route_schema

—0

— cari_schema

‘ Jcomment_schem
L

—o dr_block_schema

a gate_schema

o via_schema

Q
rpdtypes_schemalo

Figure 6.2-1 PWB Schema Level EXPRESS-G Model

142

UNCLASSIR™
CDRL No. 000z:-C -©

6.2.3 Electronic Component Library Data Model

6.2.3.1 Component Model Data Schema

This schema defines entities for modeling PWB components.

EXPRESS Specification :
*)
SCHEMA model_schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM rpd_header_schema;
REFERENCE FROM stackup_schema;

ENTITY rev_data_rec;
issue_date : NAME_TYPE;
revision : NAME_TYPE;
eco : NAME_TYPE;
eco_date : NAME_TYPE;

END_ENTITY;

ENTITY dev_origin_rec;
origin_type : NAME_TYPE;
center : POINT_REC;
offset : POINT_REC;
mirror : INTEGER;

END_ENTITY;

ENTITY label_rec;
text : STRING;
height : DIMENSION;
width : DIMENSION;
location : POINT_REC;
rotation : INTEGER;
line_width : DIMENSION;
justify : NAME_TYPE;
END_ENTITY;

ENTITY boundary_rec;
boundary_type : NAME_TYPE;
shape : NAME_TYPE;
outline : LIST [0:?) of VERTEX_REC;
layers : LIST [0:?]) of NAME_TYPE;
END_ENTITY;

ENTITY obstruction_rec;
obstruction_type : NAME_TYPE;
shape : SHAPE_TYPE;
outline : LIST [0:?] of VERTEX_REC;
layers : LIST [0:?] of LAYER_TYPE;

blocking : LIST [0:?] of BLOCKING_TYPE;

END_ENTITY;

ENTITY device_rec;

143

date of issue
revision number
latest eco number
date of latest eco

origin types
device center
placement offset
reflection code

label text

text size

text size

text location

text rotation
width of text line
text justification

type of boundary
boundary outline shape
boundary outline vertices
boundary layers

type of obstruction
outline shape

pad outline

pad layers

blocking codes

G S AN Em =

symbolic : NAME TYPE;

physical : NAME_TYPE;

model : NAME_TYPE;

location : POINT_REC;

rotation : REAL;

mirror : INTEGER;
END_ENTITY;

ENTITY dev_pin_rec;
physical : STRING;

string of integers)
symbolic : NAME_TYPE;
location : POINT_REC;
drill : DIMENSION;
stackup_name : NAME_TYPE;
stackup : STACKUP_REC;
rotation : REAL;
offset : POINT_REC;
stepping : INTEGER;

END_ENTITY;

ENTITY thermal_rec;
thermal_type : NAME_TYPE;
width : DIMENSION;
spacing : DIMENSION;
stackup_name : NAME_TYPE;
stackup : STACKUP_REC;

END_ENTITY;

ENTITY package_rec;
package_type : NAME_TYPE;
category : NAME_TYPE;
orientation : NAME_TYPE;
distance : DIMENSION;
depth : DIMENSION;
height : DIMENSION;
width : DIMENSION;
lead : DIMENSION;
fix : BOOLEAN;
body_diameter : DIMENSION;
span : DIMENSION;
insert : NAME_TYPE;
mechanical : BOOLEAN;

auto_ww_offset : POINT_REC;

auto_ww_trp : INTEGER;

semi_ww_offset . POINT_REC;

semi_ww_trp : INTEGER;
trp
END_ENTITY;

ENTITY model_rec;
header : header_rec;
mm_name : NAME_TYPE;
rev_data : rev_data_rec;
origin : dev_origin_rec;
package : package_rec;

labels : LIST [0:?] of label_rec;
boundaries : LIST [0:?] of boundary_rec;

UNCLASSIFIED
CDRL No. 0002AC-5

symbolic name
physical name
mechanical model name
location on board
rotation in degrees
mirror flag

physical pin name (must be

symbolic pin name

pin location

default drill size

pad stackup name

pad stackup record
stackup rotation

stackup offset

first stepping direction

type of thermal relief
line width

line spacing

stackup name

stackup record

package type

package category

package orientation

pin row separation

package depth

package height

package width

package lead diameter

fixed device flag

package body diameter

package pin span

package insertion code
mechanical device flag
automatic wirewrap offset
automatic wirewrap initial trp
semiautomatic wirewrap offset
semiautomatic wirewrap initial

-- pointer to header record
-- mechanical model name

-- revision data

-- origin data

-- packafing data

-- list of labels

-- list of boundaries

Al Gl T

obstructions : LIST [0:?] of obstruction_rec;

devices : LIST [0:?] of device_rec;

pins : LIST [0:?]) of dev_pin_rec;
thermals : LIST [0:?] of thermal_rec;
comments : LIST [0:?) of STRING;
attribute : LIST [0:?] of attribute_rec;

attributes
END_ENTITY;

END_SCHEMA;

6.2.3.2 Pad Stack Data Schema

list
list
list
list
list
list

UNCLASSIFIED

CDRL No. 0002AC-5

of
of
of
of
of
of

obstructions
devices

pins

thermal reliefs
comments

user defined

This schema defines entities for pin and via pad stackups. Various pad shapes for each

layer are combined. The layer assignments are then combined to form the padstack.

EXPRESS Specification :

*)

SCHEMA stackup_schema;

REFERENCE FROM rpdtypes_schema;
REFERENCE FROM shape_schema;

ENTITY pad_rec;

pad_name : NAME_TYPE;
pad_shape : PAD_SHAPE_REC;
func : NAME_TYPE;

END_ENTITY;

ENTITY pad_stack_rec;

model : NAME_TYPE;
offset : POINT_REC;
pad_list : LIST [0:?] of pad_rec;

END_ENTITY;

ENTITY stackup_rec;

stack_name : NAME_TYPE;

pad_stack : LIST [0:?] of pad_stack_rec;
drill : INTEGER;

comments : LIST [0:?] of STRING;

END_ENTITY;

END_SCHEMA;

6.2.3.3 Pad Shape Data Schema

This schema defines entities for pin and via pad shapes.

EXPRESS Specification :

*)

SCHEMA shape_schema;

145

shape name
pad shapes
pad function

layer model
pad offset
pad_names

name of stackup
pad stackups
default drill size
list of comments

REFERENCE FROM rpdtypes_schema;

ENTITY shape_rec;
shape : NAME_TYPE;
width : DIMENSION;

outline : LIST [0:?] of VERTEX_REC;

END_ENTITY;

ENTITY pad_shape_rec;
name : NAME_TYPE;

pads : LIST [0:?] of shape_rec;

END_ENTITY;

END_SCHEMA;

6.2.4 Electronic Component

UNCLASSIFIED
CDRL No. 0002AC-5

-- shape type
-- aperature width
-- shape description

-- shape name
-- pad shapes

Library Data EXPRESS-G Model

xref_schema
(o]
model_schema part_schema
Q e}
stackup_schema | shape_schema gate_schema

pin_schema

via_schema

Figure 6.2-2 Component Data EXPRESS-G Schema

146

7. Notes

7.1

Acronyms
CAEO

CDRL

CERC

DARPA
DBMS
DFMA
DICE
ISO

MO
MSD
MSL

OSF
PCB
PWA
PWB
PWF
RAPIDS

ROSE
SDAI
STEP

Computer Aided Engineering Operations
Contract Data Requirements List

Concurrent Engineering Research Center
Communications Manager

Defense Advanced Research Projects Agency
Database Management System

Design for Manufacturing and Assembly
DARPA Initiative In Concurrent Engineering
International Standards Organization
Mechanical Engineering Laboratory
Manufacturing Optimization

Missile Systems Division

Missile Systems Laboratories

Object Oriented Design

Open Software Foundation

Project Coordination Board

Printed Wiring Assembly

Printed Wiring Board

Printed Wiring Fabrication

Raytheon Automated Placement and Interconnect Design System
Requirements Manager

Rensselaer Object System For Engineering
STEP Data Access Interface

Standard for Exchange of Product Model Data

Distribution List

DPRO-Raytheon

C/O Raytheon Company
Spencer Lab., Wayside Ave.
(one copy of each report)

Defense Advanced Research Projects Agency

ATTN: Defense Sciences Office; Dr. H. Lee Buchanan
Virginia Square Plaza

3701 N. Fairfax Drive

Arlington, VA. 22203-1714

(one copy of each report)

Defense Advanced Research Projects Agency

ATTN: Electronic Systems Technology Office; Capt. Nicholas J. Naclerio, USAF
Virginia Square Plaza

3701 N. Fairfax Drive

Arlington, VA. 22203-1714

(one copy of each report)

Defense Advanced Research Projects Agency

ATTN: Contracts Management Office; Mr. Donald C. Sharkus
Virginia Square Plaza

3701 N. Fairfax Drive

Arlington, VA. 22203-1714

(one copy of each report)

Defense Technical Information Center
Building 5, Cameron Station

ATTN: Selections

Alexandria, VA 22304

(two copies of each report)

